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PREFACE

My main reason for writing this book was to make available to English-
speaking students the results of Chapter III, the so-called multiplicity
theory. The only exposition of that theory that has been easily available
in America is the one given by Stone, who discussed self-adjoint opera-
tors on-a separable Hilbert space. The theory as I present it deals with
arbitrary spectral measures and includes, consequently, the multiplicity
theory of (bounded or unbounded) normal operators on a not necessarily
separable Hilbert space, and includes, as another useful special case, the
multiplicity theory of unitary representations of locally compact abelian
groups. In view of the fact that a weakly closed, self-adjoint, commuta-
tive operator algebra has a lot of projections in it, the structure theory
for Boolean algebras of projections, as developed in Chapter III, applies
to such operator algebras also.

I have been fortunate in being able to make use of several simplifica-
tions of Hilbert space theory, some of which were published only in
the last five years. As examples of such recent contributions I mention
Eberlein’s proof of the spectral theorem and the detailed treatment of
the multiplicity theory by Plessner and Rohlin. The work of the latter
authors, in turn, is obviously very strongly influenced by the pioneering
research of Wecken. The approach to multiplicity theory which I present
has some claim to novelty, but in its fundamental ideas it is essentially
a permutation of what I learned from Wecken and from Nakano.

The first two chapters of the book are not new at all and they are
there only to prepare the way for Chapter III. The last clause is not,
however, to be taken literally-—one can draw a shorter and straighter
line between the axioms of Hilbert space and the theory of multiplicity
than the one I have drawn. Such material as does not directly contribute
to Chapter III has the purpose of nailing down the edges, so to speak—
of supporting the strictly necessary material by illuminating and illus-
trating it. Despite the presence of “‘irrelevant” theorems, large parts
of the theory of Hilbert space are still conspicuous by their absence:
I do not define unbounded operators, for instance, and I do not even
mention any of the several valuable applications of the theory to in-
teresting special cases.
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There are three technical details that the reader should know. (1)
Since some of the notation which is used throughout the book is es-
tablished in §0, both the expert and the beginner are advised to glance
at that initial section. (2) There are a few statements, printed formally
as theorems, which are not supported by even one word of proof. They
exist for purposes of reference and they are not proved, because I con-
sidered them trivial. (3) The reference system is simple and standard.
An expression such as u., where u and v are ordinal numbers, refers
to Theorem v in §u. v

In conclusion I want to express my warmest thanks to Arien Brown,
L. Gerstenhaber, M. M. Gutterman, and E. A. Michael for their aid in
They read the manuscript, made many valuable
d not back down when I objected to their criticism.
colleagues Diving Kaplansky and I. E. Segal
out multiplicity theory.

P.R. H.

preparing this book.
suggestions, and woul
1 am also grateful to my
for several stimulating conversations ab
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§0. Prerequisites and Notation

The principal prerequisite for an intelligent reading of this ;::tl!:aclt)ic();l;
is a thorough knowledge of what is usua,lly.ca'lled the theoxg ct) ctll ations
of a real variable. We use that phrase, as it is always use ,1-0 ‘ e1 (an:i
hodge-podge of the theories of sets, cardlr:ia,l_ ntur;l;ili'z,ntolpizfiiii (e

i etric) spaces, measure, and nie - Refe ‘
f::lﬁ::: :f‘sre}c}l' bltrllt not)de\I;eloped in the text (a.s well as occas.lonal ?efelf)e.r:;etz
to the sources of our material and to detailed presentations o ?Oi o
we shall barely have time to mention) are to be found at the end ot
bo%lf\e': devote the remainder of this sectior} to a detailed d(?scnptior; (;i
our terminological and notational convel_mons anq to the stgt-em:lg(;rm
a representation theorem for linear i‘ll{nl(l:t.lgr.)als W::lll(,;l g\;ferxllee in

i ‘rorent from the one in which it is usually given.
slligrhlf:,y“%ffd family is used throughout (-as a generahzat}on ?t ieq:;e:zea)l
to denote an indexed set, so that, for mstz}nge, a famllyf ‘i] 0 o
numbers is a real-valued function on & certz'nn index se'F § ]} t ngez?njt o
tive (such as finite or countable), when a-pphed toa famﬂyci is to e
preted so as to modify the index set which serves as tbe %mc?m o :) f
family. If {a;} isa family of objects, each object o is called a
th?rﬁsn:;}r’r;bol 5 is the Kronecker delta: its valug islor0 accofr(i.g;gsai
j=Fkorj#k The symbol No denotes the cardmal.numberbo s is-

of all integers. The letter x (almost always used \?'1t.h a su .ic] Ip ) a
reserved for characteristic functions, so that, for mstance,Ol. n;()rd.in
subset of a space X and if tisa poi}lt of X, then xy(f) = 1or0acc g
s or does not belong to M. o

" ';‘}?: (ivord polyromzal without an adje(.:tive means a polyrnomlxal \;L :it;
complex coefficients; the modiﬁcation.m the phrase real po ynote o
indicates a polynomial with real coefficients. The comp}ex coxguia;i o
a complex number a is denoted by o*. The least upper bo(*ilg : avmbds
greatest lower bound of a set M of real numbers are denoted by sy
such as sup {aie e M} and C;nlf) {o(z)ia ’IflM ) resbp;ct\(wel}(.

set is denoted by 0. the sym freore
“tﬁz\ Ze‘:n:ﬁtgr:? g0 that, for instance, {ata > 0} is the set of all

H

! is used for
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positive real numbers. The symbols U, N, —, and C are used for union,
intersection, relative complement, and not necessarily proper set in-
clusion respectively. The symbol e is used to indicate the belonging of
an element to a set; the negation of a belonging assertion is indicated
by & similar use of ¢. The Cartesian produet of two sets M and N is
denoted by M X N.

The convergence of a sequence {z,} of points in a metric space to a
point z is denoted by z. — 2. The closure of a subset M of a metric (or,
more generally, of a topological) space is denoted by M.

By a measure (without adjectives) weshall always mean a non-negative
and countably additive set function u defined on a Boolean s-algebra
S of subsets of a set X. Almost all the measures we shall encounter will
be finite measures, i.e. such that u(X) < . A complex measure is a
complex-valued, countably additive set function. Since the real and
imaginary parts of a complex measure are countably additive, and since,
therefore, each of these parts is the difference of two measures, it makes
sense to integrate with respect to a complex measure; the process is to
be carried out by expressing the given complex measure as a linear com-
bination of measures, as just indicated, and then forming the correspond-
ing linear combination of ordinary integrals.

If (X, S, ) is a measure space, if Af is a measurable subset of X
(i.e. if M € X and M €8S), and if a {complex-valued) function f is
integrable with respect to p on 3, then the value of the integral is de-
noted by [y f(t) du(t) or [u fdu; if M = X, the subscript is omitted.

If 1 15 a measure and if « is a positive number, the set of all complex-
valued measurable functions f such that | f}* is integrable with respect
to u is denoted by £.(u). (The only values of « which will interest us
are 1 and 2.) If two functions in £,(x) differ only on a set of measure
zero, they are regarded as identical.

A useful prepositional distinction is made by saying that a measure
w is defined on S and in X. This usage may be extended slightly. If X
is a set, if S is a Boolean c-algebra of subsets of X, and if M is a set in
S, we shall speak of a measure u defined 7n M, meaning that g is defined
on Sand u(X — M) = 0. :

The representation theorem that we mentioned earlier may be stated
as follows. Suppose that I is a complex-valued function whose domain
is the set of all real polynomials (in one variable) and which is such that
L(ap + Bg) = aL(p) + BL(g) whenever « and 8 are real numbers and

p and g are real polynomials—suppose, in other words, that L is a linear
functional of polynomials. Let X be the real line and let A be a compact
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subset of X; for any complex-va.lued,. bounded f_u'nction { (;n Ad\;;lrlitﬁ
Na(f) = sup { | SO [N e Al 1f the linear functional L is ozn )bi i
the sense that there exists a positive real number o such th_at | L(p 1;
aNa(p) for all real polynomials p, then there exists a umque cogls]zwi]
measure p defined on the class of all Borel §ubsets ?f X and m'A ax} re
that L{p) = [ pdu for all real polynomials p. The com}gle:\ lme‘ll)zl‘;t nl;
has, moreover, the property that | w(3) | £ e forevery Borel su ]
o 1, it id be bad
1 it would be A
Tlft: Itrlll::e ‘:1?:; :'e’ need is the extension of the .theorem to t\vo1 dimfn-
sions. The statement of the more general result s very easy t(? d e;(-ltl' )el
it is obtained from the statement above b'y chax’l,gmg ti.le pauc‘ant_ e. lt(lae
phrase “in one variable” to “in two variables, ’and mterprzt"u;g t‘l
symbol X as the Cartesian product of two real lines {or, equivalently,

as the complex plane).

enough—but we need even more.

CHAPTER 1
THE GEOMETRY OF HILBERT SPACE

§1. Linear Functionals

Throughout this book we shall work with vector spaces over the field
of complex numbers, or, as they may be more briefly described, complex
vector spaces. The simplest and yet by far the most important example
of a complex vector space is the set G of all complex numbers, with the
vector operations of addition and scalar multiplication interpreted as
the ordinary arithmetic operations of addition and multiplication of
complex numbers.

We reeall an elementary definition. A linear transformation from a
complex vector space £ to a complex vector space £ is a mapping 4
from $ into # such that A{ex + 8y) = adz + BAy identically for all
complex numbers « and 8 and all vectors z and y in $. Just as the special
vector space G plays a distinguished role among all complex vector
spaces, similarly linear transformations whose range space £ coincides
with € (such linear transformations are called linear functionals) play a dis-
tinguished role among all linear transformations., Explicitly: a linear
functional on a complex vector space 9 is a complex-valued function
£ on $ such that (and now we proceed, for the sake of variety, to state
the definition of linearity in terms slightly different from the ones used
above)

() £is addetive (le. E(x + ¥) = £(x) + E(y) for every pair of vectors
2 and y In $), and B

(i) £ is homogeneous (i.e. #(ax) = at(z) for every complex number
« and for every vector z in ).

It is sometimes convenient to consider, along with linear functionals,
the closely related conjugale linear functionals whose definition differs
from the one just given in that the equation §(ax) = of(x) is replaced
by £{ax) = a*t(z). There is a simple and obvious relation between the
two concepts: a necessary and sufficient condition that a complex-valued
function £ on a complex vector space be a linear functional is that £*
be a conjugate linear functional.

11
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§2. Bilinear Functionals

For the theory that we shall develop, the concept of a bilinear'f'unc-
tional is even more important than that of a linear functional. A bzlmf:ar
functional on a complex vector space Hisa comple'x-valued function
¢ on the Cartesian product of § with itself such that if &) = @) =

o(z, y), then, for every 2 and y in 9, & is a linear functional and n; is a 7

j ¢ linear functional.

cor’?lllligsaéeﬁnition of a bilinear functional is different frox.n the one com-
monly used in the theory of vector spaces over an arbitrary field; thﬁ
usual definition requires that, for every x and y in s’;_, both. 2 a.x.ld 5,, shu”
be linear functionals. An example of a bilinear functional m.thls us.ual
sense may be manufactured by starting with two arb-ltrary lmeag
functionals £ and » and writing ¢(z, ) = E(:E)'q_(y); an obviously 1'e1a1t1e
example of a bilinear functional in the sense in which we defined t a:t
concept is obtained by writing ez, y) = E(:q) 7*(y). The 9b3ects that }\:e_
defined are sometimes called Hermilian bilinear fu.nctlonals. Further
examples of either usual or Hermitian bi!inear functionals may be gon;
structed by forming finite linear combinations of examples of _thf} prof ue
type described above. After this brief commf-:‘x}t on the pecu]narlt}_'.o 01111r
terminology (adopted for reasons of simphc:ty)! we shall cox}smtent ¥
stick to the definition that was formally given in the preceding para-
gr?t)}:s easy to verify that if g is a bilinear funchi(?r}al and if t%le funﬁl}(;p
v is defined by ¥(z, ¥) = ¢*(y, ), then ¥ is a blhnegtr. func:tlonal. A bi-
linear functional ¢ is symmetric if ¢ = ¢, or, expllcltly,' if (p(:v,. ¥) =
¢*(y, x) for every pair of vectors = and y. A bilinear fun-ctlon‘al @ is pf;sit-
tive if o(z, ) = 0 for every vector x; We shall say that ¢ is strictly posifive
if p(z, x) > 0 whenever z # 0.

§3. Quadratic Forms

The quadratic form ¢ induced by a bilinear functional ¢ on a complex
vector space is the function defined for each vector x by ga(:l))' = q:((lx,ﬁ :v)..
Using this language and notation, we may paraphrase one of the. efini-
tions in the last paragraph of the preceding section as follows: ¢ is posi-
tive if and only if & is positive in the ordinary sense of taking only
positive values. _

A routine computation yields the following useful result.

TaEoREM 1. If s the quadratic form induced by a bilincar functionol
¢ on a complex vector space D, then

§4. INNER PRODUCT AND NORM 13

plr,y) =2GG@+v)) - e —v)
+ e + @) ) — (G — i)

for every pair of vectors x and y in 9.

The process of calculating the values of the bilinear functional ¢ from
the values of the quadratic form &, in accordance with the identity in
Theorem 1, is known as polarization. As an immediate corollary of this
process we obtain (and we state in Theorem 2) the fact that a bilinear
functional is uniquely determined by its quadratic form.

TororEM 2. If two bilincar functionals ¢ and ¥ are such that ¢ = 12,
then ¢ = .

Theorem 2 in turn may be applied to yield a simple characterization
of symmetric bilinear functionals,
THEOREM 3.

A Wilinear functional ¢ ts symmetric if and only if ¢
15 real.

Proof. If ¢ is symmetric, then $(x) = o(x, 1) = o*(z, ) = $*&)
for all z. If, conversely, ¢ is real, then the bilinear functional ¥, defined

by ¥(z, ¥} = ¢*(y, ), and the bilinear functional ¢ are such that $ = §;
it follows from Thecrem 2 that ¢ = 3.

§4. Inmer Product and Norm

An nner product in a complex vector space £ is a strictly positive,
symmetric, bilinear functional on $. An inner product space is a complex
vector space  and an inner product in . The vector space € of all
complex numbers becomes an inner product space if the inner product
of & and § is defined to be a8*; in what follows we shall always interpret
the symbol §, not merely as a vector space, but as an inner product space
with this particular inner product.

It is convenient and, as it turns out, not confusing to use the same
notation for inner product in all inner product spaces; the value of the
mner product at an ordered pair of vectors z and y will be denoted by
(z, ¥). The quadratic form induced by the inner product also has a uni-
versal symbol: its value at a vector z will be denoted by || = ||*. The
positive square root || z || of || z |{* is called the norm of the vector z.
Note that the norm of a vector « in the inner product space € coincides
with the absolute value of the complex number «a.

Throughout this book, unless in some special context we explicitly in-
dicate otherwise, the symbol © will denote a fived tnner product space; all
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g ill be resamed to belong to © and tlr.\e
zggxaﬁg clolir'orzﬁ?l:isrn::;:so r:n‘;l the plx)'oofs of all theorems will pertain
to O. - |

Tueorem 1. A necessary and sufficient condition that T = 0 s
that (z, y) = 0 for all y.

Proof. If (z,y) = Ofor all y, then, in ;.aarticulaIt, .(:c, z) =_0 gn;lfco::i:
quently, since the inner product is strictly positive, z ﬁ_ . . th;t o
versely, z = 0, then (z, ) = 0z, y) = Oz, y) = 0.f (h ofe that the
proof of-the converse is nothing more than the proof o ft e fac g
£ is any linear functional, then £(0) = 0. It follows, ofcoui‘lsi, i
¢ is any bilinear functional, then ¢(0,y) = oz, 0) = Ofora .

TueoreEM 2. (The parallelogram law.) For any veclors x and ¥,

Hz+ylt+llz =yl = 2z |l + 2l wil"

Proof. Compute.

The reader should realize the relation between The.orem l2 a%nd
the assertion that the sum of the squares of the -two dlag.gnixs of a
parallelogram is equal to the sum of the squares of its fou}' si faa. duct

The most important relation between Yectors of an inner P ot
space is orthogonality; we shall say Fhat x is orthogonal to y, n antl; s
z Ly if(xy =0 In terms of this cc'mcept Theorem 1 s;a.ys ) a‘s the
only vector orthogonal to every vector 18 0. For ort.hogona v;‘:c f)l o
statement of the paralielogram law may be considerably sharpened.

TaeoreM 3. (The Pythagorean theorem.) If = 1 y, then
Nz +yif =1zl + vl

The reader should realize the relation between ’I_‘heorer.n 3 an.d zl;le
assertion that the square of the hygf)te;mse- c;)f a right triangle is the
res of its two perpendicular sides.
sui ?:,I:!tillgs?;i of vectors is I:m orthogonal fc_zmily if z; _L 2k \-vlzfnetx./?r
j # k. We shall have no qualms about using the obvxous'; in l}llc :V.(;
generalization of the Pythagorean theorem, ie. the assertu;n that i
{z;] is a finite orthogonal family, then |} Z;x; " = Z;ll2; i

§5. The Inequalities of Bessel and Schwarz

A vector z is normalized, or is a unit vector, ifllzli=1; the. process
of replacing a non-zero vector by the unit vector z/|| = Il is cazlle.d
normalization. A family {z;} of vectors is an orthonormal family if it

§5. THE INEQUALITIES OF BESSEL AND SCHWARZ 15

is an orthogonal family and each vector z; is normalized, or, more ex-
plicitly, if (x;, z) = &, for all  and k.

TuEOREM 1. (Bessel’s inequality.) If {x;} is a finite orthonormal family
of vectors, then

il z) P s ||z
for every veclor x.
Proof.

0 = llw— 2@,z I = |2 — 2,6, 2)(z5, 2) — Zila, 25)*(=, 7))
+ ZZu(r, 1)@, ) (s, m) = [z~ 2| @, 2) ["

(The expressions (z, z;) will occur frequently in our work; they are

called the Fourier coefficients of the vector x with respect to the ortho-
normal family {z;}.)

It is sometimes useful to realize that the strict positiveness of the
inner product is not needed to prove the Bessel inequality. In the
presence of strict positiveness, however, the statement of Bessel’s in-
equality can be improved by adding to it the assertion that equality
holds if and only if  is a linear combination of the z,’s. The proof of
this addition is an almost immediate consequence of the observation
that in the proof of Bessel’s inequality there is only one place at which
an inequality sign occurs.

TueoreM 2. (Schwarz’s inequality.) | (z, y) [\\ sllzli-llyll-
Proof. Ify = 0, the result is obvious. If y # 0, write yo = /|| v || ;
since || 4o || = 1, i.e. since the family consisting of the one term v, is

an orthononormal family, it follows from Bessel’s inequality that
P = 2] ‘

Schwarz’s inequality, just as Bessel’s inequality, would be true even
if the inner product were not strictly positive (but merely positive). Qur
proof of Schwarz's inequality is not delicate encugh to yield this im-
provement: we made use of strict positiveness through the possibility
of normalizing any non-zero vector. In the presence of strict positive-
ness, however, the statement of Schwarz’s inequality can be improved
by adding to it the assertion that equality holds if and only if x and y
are linearly dependent; the proof of this addition is, in one direction,
trivial and, in the other direction, a consequence of the corresponding
facts about Bessel’s inequality.

The Schwarz inequality has an interesting generalization. If {z;} is a
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non-empty, finite family of vectors, anc} if Tk = (:c.j, :ck)_, then the
determinant of the matrix {y ;] is non-negative; it vanishes if and only
if the z;'s are linearly dependent.

§6. Hilbert Space
Trugorewm 1. The norm in an inner product space is
strictly positive (i.e. || z || > O whenever % # 0),
positively homogeneous Ge |laz|l =lalllz ), and
subadditive Ge. ||z +yll Szl +1ly 2
Proof The strict positiveness of the norm is merely a restatement of

the strict positiveness of the inner product. The positive homogeneity of
the norm is a consequence of the identity

Il oz:l:n2 = (ax, ax) = ac®(x, x) = lalE-I]Il[z.

The subadditivity of the norm follows, using Schwarz’s inequality,
from the relations

le+yll*=G+tyz+) <z + =l + G, )l + ol
‘éHtz+2lle-llyH+Hy1l2= (lath -+ Hy D™

TuaeoreMm 2. If the distance from a vector x to @ vector y 1sde ﬁrfed to be
Wz — yll, then, with respect to this distance function, His a‘n‘wtm.c space.

Proof. The fact that the distance function is strictly positive (i.e. that
|z - ‘y || = 0, with equality holding if and only if z =.y) follows frf)m
the strict positiveness of the norm. The fact that the dlsta,r}ce functlofl
is symmelric (i.e. that ||z — ¥ =y — =il ‘for every pair of vi;:t;lls
z and ) follows from the positive homoge.nelty of thea. norm and the
identity (z — ) = (— 1)(y — ). The valldilty of the iriangle meq'wlzhtgé
(i.e. the relation ||z — ¥ e —2ll+ Hz —-y || for every trip eﬁ)
vectors z, 3, and z) follows from the subadditivity of the norm and the
identityz —y = (= — 2) + (z— ).

In view of Theorem 2 we shall feel free to use, for .inn.er product
spaces, all such topological concepts as convergence, continuity, separa-
bility, dense set, closed set, and the closure of a set, and all such metr‘lf:
concepts as uniform continuity, Cauchy sequences, s:nd_completeness.‘
We shall, in particular, need to make use of the contmmty. of the. four
operations (scalar multiplication, addition, ‘and the formation of inner
products and norms) which are intrinsic to nner product spaces.

§7. INFINITE SUMS 17

THEOREM 3. If ®4(1) = ax, &' (z,9) = z + ¥, ®,(z) = (z, y), and
®(z) = || x || whenever a is @ compler number and x and y are veclors,
then all the funclions @, , &t @, , and & are uniformly continuous func-
tions of all their arguments.

Proof. The four assertions are consequences, respectively, of the
following four inequalities.

oz — ax|] £ |||z — x|l

@+ 3) — @+ ydl =l — el +ln — 2]l
@1, y) — (@2, ] £ @ — m ||yl

izl = Hz I | S 20— 2]

A Hilbert space is an inner product space which, as a metric space, is
complete. It is worth noting that the special inner product space €
(cf. §81 and 4) is in fact a Hilbert space. We extend the convention
established in §4 by requiring that, from now on, the inner product space
© under consideration shall @n fact be a Hilbert space.

A normed vector space is a vector space with a strictly positive,
positively homogeneous, and subadditive norm; a Banach space is a
normed vector space which, as a metric space, is complete. A small
fraction of our results will be valid for Banach spaces as well as for the
special Banach spaces (i.e. Hilbert spaces) that we are studying; when-
ever it is possible and convenient to do so, we shall arrange our proofs
so that they make sense in any Banach space. The precise extent to
which Hilbert spaces differ from general Banach spaces has received
quite a bit of attention; it may be expressed by saying that the norm
in a Hilbert space is essentially quadratic in character, in the sense, for
instance, that the parallelogram law is valid.

The completeness of Hilbert space is, to be sure, an essential part
of its structure, but it is unessential in the sense that an inner produet
space can always be completed to be a Hilbert space. More precisely it
is true that the linear operations and the inner product may be uniquely
extended to the ordinary metric completion of an inner product space
s0 that the completion becomes a Hilbert space.

§7. Infinite Sums

A family {z;} of vectors will be called summable with swm i, in symbols
S;x; = z, if for every positive number ¢ there exists a finite set Jy of
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indices such that || z — Z;w2;!l < & whenever J is a finite set of in-
dices containing Jo . It is clear from this definition that a finite family
of vectors is always summable and that its sum, in the present sense,
coincides with the elementary concept of vector sum. As another ex-
ample we mention the fact (whose proof is & not particularly difficult
exercise) that a sequence {a.} of vectors in the Hilbert space € is
summable with sum « if and only if the ordinary numerical series
$°_,a, is absolutely convergent to the value o. We emphasize the fact
(and we shall make use of it below) that our definition makes sense, in
particular, in the space € and hence that such relationsas Z,a; = a are
meaningful (though not necessarily true) for not necessarily countable
families {a;} of complex numbers.

It follows from the last remark that the theorem which we have been
calling Bessel’s inequality makes sense for not necessarily finite (nor
even necessarily countable) orthonormal families. It not only makes
sense—it is true. The proof requires nothing more than the observa-
tion that, by the definition of sums, it is sufficient to consider finite
families. We propose, accordingly, to change our custom and, in the
sequel, when we refer to Bessel’s inequality, to have in mind the gener-
alization just now discussed. More formally: Bessel's inequality is to be
interpreted as the theorem obtained from 5.1 by deleting the word
“finite.” One amusing consequence of the Bessel inequality in this form
is the proposition that if {z.} isan orthonormal sequence, then (z, T.) —
0 for every vector z, i.e. that the Fourier coefficients of z tend to 0.

TuporeM 1. If Z;2; = x, thenZ;0x; = o for every complex number a.

TuporeM 2. If {z;} and {y;} are two families of veclors, indexed by
the sameset {7}, and if Z;z; = z and Z;y; = U, thenZi(z;+y;) =2+ V.

TuporeM 3. If Z;2; = =, then 2(z;, y) = (7, y) and Z;(y, ;) =
(y, x) for every vector y.

The proofs of all three theorems are quite elementary; they are, in
fact, consequences of the following three relations (valid for any finite
set J of indices) respectively: :

| ax — Zjerax; i=le l“ T — E:‘eJTJ'H '
W+ 4) — Zser s+ ydll S o = Zjwasll + 11y = Ziwslls

|(1'3 ?/) - Ejel(xfay')l = l(:l; — Z;0T;, .'/)l = H T — Ziu%; “H ¥ H .
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§8. Conditions for Summability

Treorem 1. A family {x;} of vectors is summable if and only if for
every positive number £ there exisls a finite set Jo of indices such
that || 2z || < € whenever J is a fintle set of indices disjoint from Jo .
If {z;} is summable, then the sel of those indices j for which z; # 0 is
countable.

Proof. If {r;} is summable with sum z, then for every positive
number ¢ there exists a finite set Jo such that || z — Z;rz;]] < ; when-
ever J 2DJ, . It follows that if J n Jy = 0, then
| Zserzi || = Y Zierure®i — Zjereill S 112 — Zierus, %5 ]

+llz — izl <e
If, conversely, the condition is satisfied, then for every positive integer n
there exists a finiteset J, such that || 2, 25]1 < %whenever JnlJ,=0.

By replacing J. by Jyu - uJ.,n = 1,2, -, we see that there is
no loss of generality in assuming (and we do therefore assume) that the
sequence {J,} of finite sets is increasing. (From these considerations we
can already deduce the second assertion of the theorem. If, indeed, an
index j does not belong to the countable set Jyu Jou - -+, then |} 2;{l <

1 e s
- for every positive integer n and consequently z; = 0.) To complete
the proof of summability, note that if n < m, then

| Zierns = Zsonzsll = || Bresmnamilh <7,

since (Jm — Ja) 0 Ja = 0. It follows from the completeness of Hilbert
space that there exists a vector z such that || Z,.,,4; — 2] — 0. If J is
any finite set of indices containing J., then

Nz — Zjwzil] Sz — Ziwi |l + 1 Ziuern; |l
and therefore {r;] is summable with sum z.

The second part of Theorem 1 asserts that our concept of summation
is more of a notational convenience than a great generalization of the
more elementary concept of infinite series.

TueoREM 2. An orthogonal family {x;} of vectors is summable +f and
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only if the family {|| z; | %} of positive numbers is summable; this condi-
tion may also be expressed by wriling Tillzi||? < . If 2 = 25,
then iz |l® = Zill=i 1%

Proof. If {z;} is summable, then for every positive number & there
exists a finite set Jo such that || ;@ || < £ whenever J n Jo = 0,and
consequently

Zjes || %5 Il *= | Zjerz; Il P

whenever J n Jo = 0. If, conversely, Z;i| z; || * < w, then for every
positive number & there exists a finite set Jo such that Z;e ||z, ]| * < &
(and consequently || Zjo2; {| < &) whenever J n Jo = 0; summability
follows from Theorem 1. The second assertion of the theorem is a con-
sequence of the relations

(z, %) = (Zjz;,2) = Zilz;, 2) = Z;{@;, Zus)
= 2;Zu(x;, @) = Zi(;, v

(The last step in this chain of equations depends on the obvious fact
that if all but one of the terms of a family of vectors, or, in particular,
of complex numbers, are zero, then that family is summable and its
sum is the exceptional term.)

Note that the second part of Theorem 2 is the obvious generalization
of the Pythagorean theorem to not necessarily finite sums; just as in
the ease of Bessel’s inequality we shall in the sequel use the phrase
Pythagorean theorem to refer to the generalized version.

§9. Examples of Hilbert Spaces

A typical and general example of a Hilbert space is the space Q(u} of
all complex-valued, measurable, and square-integrable functions on a
measure space X with measure p (with the usual understanding that
two functions which differ on a set of measure zero only are to be identi-
fied). The linear operations in this space (as in every function space) are
the usual pointwise operations and the inner product is defined by
(f, ¢ = Jf&)g* () du(®).

An important special case of the example in the preceding paragraph
is the one in which every subset of X is measurable and has as measure
the number of its points. By an obvious change of notation (from f(t)
to £;) the typical element of this Hilbert space becomes a family {£;} of
complex numbers with the property that Z; 1£]1* < =} scalar multi-

$10. suBSPACES 21

plication, addition, and inner product are defined by

alt}l = {a;], {61 + (i} = {& + 93l

and
g, (s = iy,

respectively. (It is understood, of course, that the index set {j} is the
same for all vectors.)

An 1.mports-mt generalization of the example in the preceding para-
graph is obtained as follows. Let {$;} be a family of Hilbert spaces and
denote py Z;9; the set of all families {z;} of vectors such that z; ¢ §;
for all j and such that =, [|z;|}* < oo. If scalar multiplication, addi-
tion, and inner product are defined in Z;9; by

afz;} = {az;}, {x;} + Ay} = {2 + yil,

and
(st {yi}) = iz, va),

respe_ctively, then Z;9; becomes a Hilbert space. (The proof of this
.fact is a straightforward imitation of the proof that applies to the case
in whlch' 9; = € for all j.) The space 2,9; is called the external direct
sum or simply the direct sum of the family {$;} of Hilbert spaces.

‘ Further examples of Hilbert spaces are: (i) the set of all those func-
tions, defined and analytic in the interior of the unit circle in the complex
plane, the square of whose absolute value is integrable with respect to
pl.anar Lebesgue measure, and (ii) the set of all functions almost periodic
with exponent 2 in the sense of Besicovitch.

§10. Subspaces

A_ linear manifold is a non-empty subset M of H such that if 2 and y
are in I, then ax + By ¢ M for every pair of complex numbers « and 3.
A subspace is a closed linear manifold. The easiest examples of sub-
spaces are the set O containing 0 only and the entire space . Note that
a subspace of a Hilbert space is a Hilbert space and that therefore we
may (and frequently shall) apply to subspaces any proposition we
please, as long as it is true of all Hilbert spaces.

If p is Lebesgue measure in the real line, then the following subsets of
the Hilbert space 2:(x) are all linear manifolds:

(i) the set of all those functions f in L{u) for which f(t) = f(—1¢) for
{almost) every {; )
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(ii) the set of all those functions in (k) which vanish at (almost)
every point of a certain measurable set;

(iii) the set of all (essentially) bounded functions in (u)-

The first two of these sets are subspaces; the last one demonstrates the
fact that there exist linear manifolds which are not closed. For another
example of a linear manifold which is not a subspace consider the
Hilbert space of all families {£;} of complex numbers such that
z;1E1% < o (cf. §9) and the subset of all those families which have
only a finite number of non-zero terms.

It is easy to see that the intersection of any family of subspaces is a
subspace. It follows that it makes sense to define the subspace spanned
by an arbitrary subset M of § (the span of M, in symbols V) as the
intersection of all subspaces containing 9, or, equivalently, as the least
subspace containing M.

Tueorem 1. If M is a non-emply subset of © and if N 1s the sel of all
finite linear combinations of elements of M, then 9% 4s a linear manifold
and VIt = Tt (= the closure of N).

Proof. It is clear that 9 is a linear manifold and hence that M is a
subspace; since M C 9, the minimal property of VI implies that
VM < R. On the other hand the fact that V9! is a linear manifold
implies that %t < VIt Since VM is closed, it follows that N VIR

If 9 and N are subspaces, we shall use the symbol ¢ v 9t for the sub-
space V(I u N); more generally, if {#%;} is any family of subspaces
then V;M; will denote the subspace V (U; ;). Tt follows from these
definitions that I v N is the least subspace containing both TN and %,
and, more generally, that v;M; is the least subspace containing every
term of the family {3;}.

The essential results of this section can be described rather simply
in the language of lattice theory. The possibility of a lattice-theoretic
formulation is based on the trite observation that the set of all sub-
spaces of § is a partially ordered set with respect to inclusion. The fact
that for any family {9t;} of subspaces there exists a greatest subspace
(N,;9M;) contained in them all and there exists a least subspace (V ;M)
containing them all may be expressed by saying that this partially
ordered set is a complete lattice. While this lattice has many interesting
properties, it is not in general so accomodating as to be distributive,
nor even modular. It turns out, in fact, that the lattice of all subspaces
of a Hilbert space is modular only in the familiar finite-dimensional
cases, and that it is distributive only for the extremely trivial spaces
whose dimension is 0 or 1.
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§11. Vectors in and out of Subspaces

A vector z is orthogonal to a subset M of H, in symbols z 1 T, if
z J_ y for all y in M. The purpose of this section is to obtain two resx;lts
which our geometric intuition makes obvious and desirable. The first
pesult is that the minimum of the distances from any fixed ve.ctor to the
vectors of any fixed subspace is always attained; the second result is,

essentially, that if a subspace is a proper subset of $, then there exists
4 non-zero vector orthogonal to the subspace.

Ieeorem 1. If M 4s a subspace, if = 1s a veclor, and if & =

inflll y zll:y € M}, then there exist :
s a vector
that ||y — z || = 6. yo in M such

Proof. Let {ya} be a sequence of vectors in I
* : such that |} y, —
5. Tt follows from the parallelogram law that hy 2l

10— ynll* = 2l gn = 211 + 211y — oI
l —4“%(yn+ym)—x”2
for every n and m. Since $(y. + y.) ¢ P, it follows that
[ $(yn + ym) — 2| " 2 &
and hence that
gn = ymll" S 20{ya— 2|]* + 2| ym — z||" — 48"

i&s ;2—> & f.nd mg——> o, the right side of the last written relation tends
ﬁ 8" 4+ 25" — 48" = 0, so that {y,.} is a Cauchy sequence. If ¥, — y,
then yo ¢ 2} and, by the continuity of the norm, ’

lye — 2| = lima || ya — = |} = &.

THEOREM .2. If M and N are subspaces such that M C N and T = N
then there exists a non-zero veclor z in N such that z 1 IN. ,

' Proof. Let z be any vector in 9 which is not in I and write § =
inf {|| y — z ||y ¢ M}. By Theorem 1 there exists a vector yo in 3N such
that |[yo — z || = 8; write z = y — z. The fact that z » 0 follows
from the fact that x ¢ . Since ys + ay ¢ M for every vector y in M
and every complex number q, it follows that .

2+ oyl = i+ ap) — 2| 2 3
and hence that

0 llz4ayll*—|lzli*= a*(e 1) + aly, 2) + lal®|lyli®
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If, in particular, @ = B(z, y) for any real number 8, then
0= 28i@ N + B 1Nyl
The validity of this inequality for small negative values of 8 implies

the vanishing of the coefficient of the linear term. We conclude that
2 1 y and hence, since y is an arbitrary vector in 9, that z L m.

§12. Orthogonal Complements

The orthogonal complement of a subset M of H, in symbols M, is the
set of all.vectors z such that = L It If M and N are subspaces such
that M < N, the orthogonal complement of M in M, in symbols R — M,
is the set 9t n M.

Tugorem 1. If MM is a subsel of D, then M- is a subspace
and Mn M~ C O. '

Proof. If z ¢ M and if ¥ and 72 are in M, then, for every pair of
complex numbers o and a:,

(@, ay + o) = ab (@, y) + al(z, y2) = 0,

s0 that 9~ is o linear manifold. The fact that MM is closedj_follows
from the continuity of the inner product. To see that MM CO,
observe that if z ¢ M n M, then = L z.

TaroreM 2. If It is a subset of O, then Mmoo

Proof. IfzeTandy e M-, thenz L y,sothatz L M and there-
forez e M.

TaeoreM 3. If M and N are subsels of © such that M C R, then
) il

Treonem 4. If M s a subset of O, then M~ = me

Proof. Applying Theorem 2 to 90" in place of M, we obtain m- <
g¥-~~. Applying, on the other hand, Theorem 3 to the relation M C

J L B Y

M-, we obtain the reverse inclusion m- oM .

The preceding results are easy and in a sense automatic. As another
such almost automatic result we mention the fact, whose proof is an
easy exercise in the use of orthogonal complementation, that if {D,} isa
family of subspaces, then (v, M)>" = N, 9; . The only non-trivial
assertion along these lines (Theorem 5) is a consequence of the geo-
metric discussion of the preceding section.

Taeorem 5. If I s a subspace, then M = |
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Proof. According to Theorem 2, M < M . If

cco , . If 9N were a proper
subset of me then, by 112, M would have a non-zero vector in
common J-Ylth M ; since this would contradict the relation
P n M = §, the proof is complete.

N Itt'il :;waor't]h Iies;;irk?ng fhat, applying the identity (v, D¢, = N ;M
amily i} in pla ; in, in vi

T of g}g }J.)-‘- i Sigc}g -I;{?RJ}’ we obtain, in view of Theorem 5,

To obta:in the deepest and most useful fact about orthogonal com-
plementatlon {Theorem 7), we need an auxiliary concept and an auxil-
iary result which are of considerable interest in themselves. The concept
is Fhat of the vector sum of two subspaces I and N, in symbols T + N;
it is defined to be the set of all vectors of the form z 4+ y with = ¢ QJE’
anq y e M. It is easy to see that M + N C M v N and that M + N is
a linear .ma.nifold; the result is that in at least one important case
SUE‘ + N is actually a subspace. The hypothesis sufficient to guarantee
this is that I and N are orthogonal, in symbols M L N: this means
naturally, that z L N for every z in . . ,

ZTI:lEOREM 6. If M and N are orthogonal subspaces, then M + N s
closed.

Proof. Suppose that {z.} is a sequence of vectors in M + N, so that
for each m, z, = x. + yn with z, ¢ M and y. ¢ N, and suppose that thé
sequence {z,.z} converges to a vector z in §. By the Pythagorean theorem
l2zn — 2m||? = |l2n — 2 || * + || y» — ym || * for every » and m, and’
therefore both sequences {x,} and {y.} are Cauchy sequences. If z, — z
a_nd Y. — ¥, then 2 ¢ D and y ¢ N; it follows from the continuity of addi-
tion that z, — & 4+ y and hence that z ¢ M + N.

Taeorem 7. (The projection th .
S ( projection theorem.) If M 1s a subspace, then
Proof. If M + M = N, then, b y i
. -t , , by Theorem 6, N is a subspace.
Since M C N and SDEL C N, it follows that N~ C MW and N < WI;;CE
gl.:(_i therefore that W~ = ©. We conclude, as desired, that 9t = N~ =’
= 9.

§13. Yector Sums

The concept of vector sums, introduced in the preceding section
dese.rves further study and generalization. The first step, namely thc:
Pel‘t.IIlEIlt definition, is easy: we define the veclor sum of an arbi'trar\;
family {9%,} of subspaces, in symbols Z;9;, to he the set of all veetors
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of the form Z;z; with z; € M; for all 7. It is easy to see, just as in the
finite case, that Z;M; is a linear manifold. As the following theorems
show, the very close connection between vector sums and spans also
persists in the general case.

Tueorem 1. If [IN;} 1s a family of subspaces and M = Z;M;, then
VM, = m.

Proof. Since Um,; 91, and since N is a subspace, it follows that
v,;M; € M. Consider, on the other hand, the set of all those vectors
of the form =;z; for which z; ¢ IM; for all j and for which z; = 0 for
all but a finite number of values of j. Since, by the definition of infinite
sums, this set of vectors is dense in M, and since V;M; is closed, it
follows that 9% C V,;9M; and therefore that M c v, Mm;.

We call attention to the fact that Theorem 1 is a non-trivial state-
ment even in the finite case: it asserts that if My and M, are subspaces
and M = T + M, then My v Me = M. We have seen that if 9% and
9, are orthogonal, then M is closed and therefore 90 v My = M; it is
natural to ask whether or not the bar (the closure operation) is ever
really necessary. In §15 we shall show that it is, i.e. that the vector
sum of two subspaces can fail to be a subspace.

7e turn now to that part of the theory of vector sums which behaves
itself—in which, that is, the pathology we mentioned in the preceding
paragraph cannot occur. A family {9;} of subspaces is an orthogonal
family if M; L D whenever j # k. (A vector sum of an orthogonal
family of subspaces is frequently called an orthogonal sum, an internal
direct sum, or simply a direct sum.)

TaeoreMm 2. If {M;} is an orthogonal family of subspaces, then
VD = Z;M 5 the representation of an element of Z;M; in the form
3%, , with x; € M; for all j, s unique.

Proof. To prove the first part of the theorem, it is sufficient to show
that V,MM; C Z;W;. U z ¢ V;M;, then, by the projection theorem,
for each value of j there exists a vector z;in 9, and there exists a vector
y; in M such that z = z; + ¥i. If z; ¢ 0 for some j, then
(=, z;/]| z; 1) = [l z; || and it follows therefore, from Bessel’s inequality,
that Z; 1l z; ]| < «. Applying 8.2, we sec that there exists a vector Zo
such that zo = Z;z; ; we shall show that x, = 2. If y € M;, for some Jo,
then (;'G - T, 1/) = (Ijur y) + (yio: y) - (Eixi r y) =0 (by 73)’ ie.
v — xz L My, for all jo. It follows that = — %o 1 =,;M; and therefore,
by Theorem 1, thatz — xo L v,;M; . Since, however, z — Zo € v;Mm;,
we conclude that indeed z — zo = 0. To prove the second part of the
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theorem, it is sufficient to show that if Z;z; = 0, with z; ¢ M; for all j,
then z; = 0 for all j, and this follows from the (general) Pythagorean
theorem.

§14. Bases
A basis of a subspace M is a maximal orthonormal family of vectors

in M.

Although it follows immediately from Zorn’s lemma that every sub-
space possesses a basis, it is sometimes possible to replace this trans-
finite argument by a constructive method; one such method is the
Grqm—Schmidt orthogonalization process. The process is an inductive one
which, at its k-th stage, replaces the k-th term of a linearly independent
sequence {z,) of vectors by a vector y in such a way that (1) ye is a

linearﬁombination of x,, -~ , 2, (ii) the sequence {y} is orthonormal,
and (iii) V{ya] = V{z.). The process can be started off by writing
ys = /|| 21 || ; after y1, - - -, yx have been constructed, yis1 is obtained

by normalizing the vector xi: — Sha(es, YY; -
If 4 is Lebesgue measure in the unit interval, and if

falt) = 17, 0<t<l n=2012- -

ihen the Gram-Schmidt orthogonalization process may be applied to
the sequence {f.} in the Hilbert space 2:(x). The process yields a basis
of (1) consisting of polynomials. Another basis of £:(u) is the sequence
fgn}, where

ga(t) = &7, : 0<¢t21, n=0,%1,x2 -

In the I;Iilbert space of all families {£;} of complex numbers such that
Z;1£]? < w, the vectors {£7] defined by £” = 8; constitute a basis.

TgEOREM 1. A necessary and sufficient condilion that an orthonormal
j:amzly _{x ;1 of vectors in a subspace M satisfy all the following conditions
is that it saltsfy any one of them.

(1) The family {z;} is a basis of M.

(11) IfzeMandifz L z; forall j, thenz = 0.

(111.) If, for each j, M; is the subspace spanned by the sel consisting of
the :szngle veclor ; , then V;M; = M.

(iv) If z e M, then x = Z{z, z;)x; . (Fourier expansion.)
(V) If z and y are in M, then (z, ¥) = Zj(z, z)(x;, y). (Parseval’s
identity.) N

(i) If z e D}, then ||z || * = Z;|(z, 23l *
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Proof. We shall prove that each of the conditions (i.), (ii'), (iii), (v),
and (v) implies the one following it and that (vi) implies (i).

(i) ¥ z e M, if & L z; for all j, and if  # 0, then z/|| z || may b.e
adjoined to the family {z,}, in contradiction to the assumed maxi-
mality of that family.

Gi) If v,;M; # M, then, by 11.2, M contains a non-zero vector x such
that z L z; for all j. ' o

(i) Since {M;} is an orthogonal family of subspaces, 13.? implies
that V,;IM; = Z,;M; and hence, if (iii) is true, every vector z in M has
the form Z;o;x; with suitable complex numbers a;. It follows that
(z, xi). = Zje;(x;, 1) = o for every index k.

(iv) Ifz = Z;a;z;andy = Z;8;z;, with a; = (x;‘:t:,-) andB; = (v, x;)
for all j, then (1‘, y) = (2,’0!556,' 3 Ekﬁkxk) = 2,-(3:,-@,' . ) i

{(v) If (v) is true for all z and y in 9, then it is true, in particular,
when z = y. ' - _

(vi) If the family {z;} is not maximal, say, for instance, if it remains
orthonormal after the adjunction of a vector z, then that vector x does
not satisfy the relation (vi).

§15. A Non-closed Vector Sum

Familiarity with bases and Fourier expansions enables us to give an
example of two subspaces I and N such that m+ N~ sm_ v .

To motivate the construction, we recall first of all that if ML N,
then M 4+ N = M v N, i.e. that equality holds if I and N are orth.og-
onal. Equality can be made not to hold by getting as far as possible
from orthogonality. Intuitively speaking we may say that the Sl}bspa.ces
we shall construct make an angle of zero degrees; more precisely we
shall construct 9 and N so that M n N = O and, for suitable normal-
ized vectors z and 2, in MM and N respectively, the inner product (z, 2)
comes arbitrarily near to 1.

Let {z.} and {y=} be two infinite orthonormal sequences such that
Zn L ym for all n and m, and write z, = anZa -+ By for every n, w.h.ere
the coefficients &, and 8. will be determined presently. The first con@1t10}1
that we wish to put on «. and B, is that the sequence {z.}, which is
automatically orthogonal, shall be orthonormal as well, i.e. that.l =
Hzal]® = laal® + |8al *. For the sake of simplicity.' we_shall insist
that a, and S, shall be strictly positive real numbers. Since in that case
(2n , 2x) = an for every =, it follows that the subspaces M=V {z.}
and ¢ = V{z.} will certainly have the property mentioned in the
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preceding paragraph if &, — 1, or equivalently 8. — 0,asn — «, Fora
technical reason (which will become apparent soon) we choose to ensure
the validity of the relation 8. — 0 by selecting the 8,’s so that Z,8% <
. This is all the machinery we need; we remark that the sequences

{cos %} and {sin :rl_z}’ for example, have all the properties we demand of

{aa} and {B.] respectively.

To prove that M + N = M v N, we have to exhibit a vector y in
M v N such that y does not belong to M + N. Since T.B8: < =, it
follows that the sequence {8 y»} is summable; we assert that if y =
ZmBmym, then the vector y has the desired properties. The fact that
an # 0 implies, indeed, that y,, ¢ M + N for every m and hence that
y e M v R I it were true, however, that y e M + N, sayy =z + 2
with 2z ¢ M and z ¢ N, then we should have

B = W ¥m) = @+ 2, ¥m) = @ Yn) = (Za(2, 22)2n , Yu)

= (2, za)(2m, ym) = (z: Zm)Bm

for every m. Since 8, 7 0, it would then follow that (z, z.) = 1 for
every m, but since (z, zn) is the m-th Fourier coefficient of z with re-
spect to {z,}, this is preposterous.

§16, Dimension
THEOREM 1. Any two bases of a subspace M have the same power.

Proof. Let {x;] and {y:} be two bases of I, of powers u and v re-
spectively. Since x; = Z.(x;, yu)ys for each 7, the set K; of those indices
k for which (z;, y:) # 0 is countable. Since y e M = V {z;}, no y; can
be orthogonal to all x;, i.e. every index k is contained in U;K;. It
foliows that v £ 8o-% and, by symmetry, ¥ £ Ny-v. If bothwand v are
infinite, the‘ proof is complete; if either % or v is finite, the theorem

reduces to a known result in the theory of finite-dimensional vector
spaces.

Theorem 1 allows us to define the dimension of a subspace I as the
common power of all bases of M. In the remainder of this section we
propose to show (Theorem 3) that in a sense the dimension of the
Hilbert space $ completely determines the structurg of $.

An isomorphtsm from a Hilbert space $ onto a Hilbert space £ is a
one-to-one linear transformation U from § onto & such that (Ux, Uy) =
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(z, y) for every pair of vectors z and y in 9; an isometry from a Hilbert
space  to a Hilbert space # is a linear transformation U from $ into

® such that || Uz || = || # || for every vector z in ©. Observe that an
isometry deserves its name, ie. that, in virtue of the equation
| Uz — Uyll =l U@ — M|l = |lx — yll, an isometry preserves

not only norms (distances from 0) but all distances. Observe also that
an isomorphism is necessarily an isometry. Since an isometry from 5]
to § need not map § onto &, it is easy to construct isometries which
are not isomorphisms; our next result shows that the into-onto dis-
tinction is the only one between isomorphisms and isometries.

TueoreM 2. A linear transformation U from a Hilbert space  lo a
Hilbert space  is an isomorphism +f and only 1f it 1san isomelry, mapping
$ onto 8.

Proof. We have already seen that an isomorphism is an isometry.
If, conversely, U is an isometry, and if Uz = Uy, then 0 =
HU@E - =il —y {| , and it follows therefore that U is one-to-one.
The fact that U preserves inner products follows from the assumption
that if ¢(z, y) = (Uz, Uy) and ¥(z,y) = (z,y), then the bilinear fune-
tionals ¢ and ¥ induce the same quadratic form.

Two Hilbert spaces are called isomorphic if there exists an isomorphism
between them. It follows from the definition of an isomorphism and
from our observations concerning isomorphisms and isometries that
an isomorphism preserves all the structure that went into the definition
of Hilbert spaces and that, consequently, isomorphic Hilbert spaces are
geometrically indistinguishable and may legitimately be viewed as
identical.

TaeoreMm 3. Two Hilbert spaces are isomorphic if and only if they
have the same dimension.

Proof. In view of the intrinsic definition of dimension, the “only if”
part is obvious. Suppose, conversely, that § and & are Hilbert spaces of
the same dimension and let {z;} and {y;} be bases of  and § respec-

“tively, indexed by the same set {j}. If = Z;a;2; is any vector in
and if Uz is defined to be Z;a;y;, then U is clearly a linear transforma-
tion from $ onto &; since || Uzl = i lailt =1{lzll% Uis an
isometry. The proof is completed by an application of Theorem 2.

According to Theorem 3 any property that some Hilbert spaces do
and others do not possess can be characterized simply by counting.
Thus, for instunce, a necessary and sufficient condition that $ be
separable is that the dimension of § be not greater than No. Indeed,
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since ‘the distance between any two terms of an orthonormal family is
/2, it follows that if § is separable, then no orthonormal family can b;
unc9untable. If, on the other hand, a countable, maximal orthonormal
family {z;} exists, then the set of all finite linear combinations, with

coefficients whose real and imaginary parts are both rational, is a
countable dense set in 9. ,

§17. Boundedness

{& linear trfmsf ormation A from a Hilbert space $ to a Hilbert space
§t is bounded if there exists a positive real number « such that || Az || <

e ||z || for all z in D; the norm of A, in symbols || 4 ||, i ;
of all such values of a, ymbols [| 4 ||, is the infimum

TueorEM 1. A linear transformation A from a Hilb

- . ‘ ert space O lo a

thlfertl [spcltlce R;B bounded if and only if it maps the unit sphere (?e. the

set {z:|l2 ]| = onto a bounded subset of R;if @ = su Az ||: =

ey e | p{il Az [|:]i z ||
Proof. If Aisboundedand jjz|| = I,then||dz| = ||4 |j-||z]l =

[l A || and therefore « = || 4 || . If, conversely, @ < =, then, for every
non-zero vector z, ,

WAz || = [[Aj|l-@/ll=z Il = fAGAIz DIl 2 ]] = «lj=z |,
so that A is bounded and || A || = a.

TEEOREM 2. A linear transformation A from a Hv
_ _ ilbert space o
Hilbert space § 1is bounded if and only if il 18 conlinuous. bhoa

Proof. If A is bounded, then its continuity follows from the relation
|1Ifo = Ayl 2 lJAll-ll# — y ||, valid for all vectors = and y in 9.
A is not bounded, then, for every positive integer n, there exists a

vector z, in § such that ||z, || = 1 and || Az, || = n. Since-]-‘-x,. -0
i, " ’

whereas || 4 (}- x,‘)
L \m

_ The definition of boundedness and Theorems 1 and 2 apply in par-
tlcula.r to linear transformations from a Hilbert space § to the special
one-fhmensional Hilbert space €, i.e. to linear functionals. In this
special case there is available to us a powerful and elegant result which
completely characterizes all bounded linear functionals.

! = 1, it follows that A is not continuous at 0.

Tueorem 3. (The Riesz representation theorem for bounded linear
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Sunctionals.) A linear Junctional £ on § is bounded if and only if there
exisls a vector y such that §x) = 1=, y) for all z; such a Y, if U cxists, is
unique.

Proof. If £(x) = (z, y) for all z, then | ¢(x)| < ||z |||y I, so that
£ 1s bounded and, in fact, HE =y, (It is easy, but for our pur-
Doses unnecessary, to prove that || £|] = || y i) The uniqueness of y
follows from 4.1.

If, conversely, £ is a bounded linear functional and if m =
{z:8(x) = 0}, then M is a subspace. If M = §, then £(x) is indeed
identically equal to (x, y) withy = 0, If I = 9, then M contains a
non-zero vector z; we shall prove that a suitable multiple @z of z is an
admissible . No matter what the value of o is, it is clear that if y =
az, then £(x) = 0 = (z, y) whenever z « M. If, on the other hand, » =
Bz for some complex number B, then (2, y) = (82, az) = a*8llz|1% so
that a necessary and sufficient condition for the validity of the identity
£(82) = (Bz,y) is that « = £*(2)/|| z || %. With this choice of « it is then
true that £(z) = (z, y), with ¥ =az ifeitherz e Morzisa multiple
of z. Since for an arbitrary vector » in §, z — Bz e Mif B = E(x)/E(2)
(note that £(z) 0), it follows that 8z) = $x — B2) + £p2) =
(JJ - ﬁz, ?/) + (,BZ, y) = (xl ?—.l)

§$18. Bounded Bilinear Functionals

Since a linear functional is a linear transformation, any meaningful
statement that applies to all linear transformations applies, in particu-
lar, to linear functionals. Since bilinear funetionals and quadratic forms
are no! linear transformations, their theory is not a special case but
merely an analog of the theory of linear transformations. The analogy
is quite close. We shall, for instance, say that a bilinear functional ¢ is
bounded if there exists a positive real number « such that lelz, )| =
allz||-)l y | for every pair of vectors z and y in §, and we dzfine the
norm of ¢, in symbols || ¢ || , as the infimum of all such values of a.
We shall also say that a quadratie form ¢ is bounded if there exists a
positive real number & such that [é(x)] £ af|2 || forall 7 in 9; the
norm of , in symbols || $ ||, is the infimum of all such values of a. The
first result of the preceding section may be stated (and proved) in
almost exactly the same way for bilinear functionals and quadratic
forms as for linear transformations,

TuEOREM 1. If ¢ i3 a bilinear Junctional on $ and if

a=sup {le@ Pz =yl =1),
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then a necessary and sufficient condition that ¢ be bounded is that a.< ©;
if ¢ is bounded, then || ¢ || = a. If § 18 a quadratic form on O and if
a = sup {[ ()| z || = 1},

then a necessary and sufficient condition that $ be bounded is that & < o ;
if ¢ is bounded, then || ¢ || = o.

The interesting and useful results along these lines concern the rel.a-
tions between the norm of a bilinear functional and the norm of its
induced quadratic form.

THEOREM 2. The quadratic form § induced by a bilinear functional ¢
18 bounded if and only if ¢ is bounded,; if ¢ and & are bounded, then

Hell=llell < 2{i2]l.

Proof.  Xf ¢ is bounded, then | $(z)} = |¢(z, 2)| < [l ||-l{z]|-]] 2]
for all z; it follows that % is bounded and that || $ Il |}l . If, con-
versely, ¢ is bounded, then, by polarization,

le@wl = Hlell-lla+yll*+ 1z~ yll®
+llz 4wl + |l — "
and hence, by the parallelogram law,
Lol S 11e1-Alell* + 1y (D

for every pair of vectors z and y. It follows that | o(z, )| < 2 -2
whenever || z || = {[y || = 1, and consequently (by Theorem 1) ¢ is
bounded and {| ¢ || = 2| %] .

It is not difficult to construct examples (in finite-dimensional spaces)
to show that the inequalities in Theorem 2 are in general best possible.
They allow, however, a considerable improvement in the symmetric
case.

THEOREM 3. If v is a bounded, symmelric, bilinear functional, then
lell=1laol.

Proof. 'We need only prove that |l ¢ || < |[#]| . Since the symmetry
of ¢ implies that & is real, polarization shows that the real part of ¢
is given by the equation

Re(z, y) = 63z + ¥)) — 3= ~ ¥).
It follows that
| Ree, )l < dlell-Olz+yliP+llz—yll?
=dlhell-izll* +yil™,
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and therefore that 19te(z, ¥)| = || ¢ || whenever ||z || = [{ ¥y I,J = 1. For
an arbitrary, but temporarily fixed, pair of vectors z and y with [l z [ =
iy |l = 1, let 8 be a complex number of absolute value 1 sucl? that
bo(z, ¥) = |z, ¥} . The inequality just derived, when applied to
#z and y, implies that :

| o(z, )| = oz, v) = | Re(or, I S &1,

and therefore the proof may be completed by an application of
Theorem 1.

CHAPTER II
THE ALGEBRA OF OPERATORS

§19. Operators
An operator is a bounded linear transformation from £ into $.

Treorem 1. If A and B are operalors and if, for every vector x and

for every complex number o, (ad)xr = a(dz), (A + B)xr = Az + Bxz,

and (ABYr = A(Bz), then ad, 4 + B, and AB are operators such that
%laAHll = llal AL A+ Bl = {4l +{[Bll, and |AB ]| =
HAll-1Bl.

Proof. It is obvious that ad, 4 4+ B, and AB are linear transforma-
tions from  into $. The fact that they are bounded, and that their
norms behave as asserted, follows from the relations

‘oA il = fai-ldell [z + Br || < || Az (| + || Bo||

slali+ 0Bl -il=ll
and
[ABo) [ = 1Al - Bzl = 1AL [ BI-l=z]].

A painless verification shows that the set of all operators on  is a
complex vector space with respect to the scalar multiplication and
addition defined in Theorem 1, and that the multiplication there de-
scribed is associative and bilinear—in other words that with respect
to these operations the set of all operators on 9 is an algebra. This algebra
contains @ unit, called the 1dentity operator and denoted by the symbol
{; it is defined by writing 1x = =z for all . No confusion will arise from
using the same symbol for an operator as for a number, nor even from
generalizing this notation and, for any complex number «, using the
symbol a to denote also the operator al. Observe that we are therebys
committed to using the symbol 0 for the operator such that 0z = 0 for
all x.

As in every algebra, we shall use the symbol A™ to denote the product
of n factors all equal to A, v = 1, 2, -+ ; 4% is defined to be 1. More
generally if p is any (complex) polynomial, p(A) = IZoa;\’, we shall

wn

uze the symbol p(4) for the operator T/ 50, 4"
35
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To these algebraic remarks we adjoin a result concgming a.'us?ful
aspect of the most important topological property (i.e. continuity)
that an operator possesses.

Taeorem 2. If A is an operalor, x is @ veclor, and {z;} 1s a family
of vectors such that Z;x; = =, then ;Az; = Az,

Proof. For any positive number ¢ we may find a finite set. Jq of
indicessuch that ||z — Z;u%; || < & whenever J is a finite set of indices
containing Jo . It follows that || Az — Z,udz; || = Il A ||¢ whenever
J O Jo, and this implies that Z;4z; = A=

§20. Examples of Operators

Since considerations concerning operators will occupy us during most
of the remainder of this book, it might be a good idea to look at & few
of them.

{i) One of the most classical examples is obtained as follows. Let X
be a measure space with measure p, and let A be a complex-valued
measurable function on the Cartesian product of X with itself, square-
integrable with respect to the product measure in that Cartesian product-
space. If fe%(u), and if Af = g¢. where g(s) = [ h(s, HF(0) du(t), then
A is an operator on ¥a(g). .

(i) Another operator on the space () is obtained by selectu.lg 2
fixed, essentially bounded, measurable function h on X and w'rxtmg
Af = g, where g(t) = R{)f(?). Operators of this type are of sufficiently
general interest and importance to deserve a name; we shall 1'e.fer‘to jche
operator A as the multiplication operator, or simply the multiplication,
defined by h. .

If X is the interior of the unit circle in the complex plane, if Ay = A
for every A in X, if u is Lebesgue measure, and if instead. of () we
consider the subspace of analytic functions described in §9(i), we obtain
an interesting and significantly different variant of this example. _

(iii) For another example, let T' be a one-to-one measure-preserving
transformation of X onto itself and write Af = g, where g(s) = f(Ts).
To obtain an easily manageable special case, let X be the real lme,. let
u be Lebesgue measure, and define 7'by T's = s + 1. A useful.generahza-
tion of this special case is obtained by replacing the real line by any
locally compact topological group, replacing u by its left Haar measure,
and defining T to be, say, left multiplication by a fixed element.

(iv) Consider the Hilbert space of all sequences {£.] of complex
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numbers (n = 1,2, --- ) such that Z, | £ |° < <, and write A{£.} =
{n.}, where 4, = {.41 for all n. Formally the same definition of A yields
a significantly different operator if we consider instead the Hilbert
space of all families {f.] of complex numbers, n = 0, &= 1, = 2, --- .
Instead of writing . = £:41, we might have written 4. = Z natamén,
where @am = 8.41.m ; different examples of operators are obtained by
varying the matrix [e..]. We shall not enter into a discussion of what
conditions a matrix must satisfy in order to define an operator, but,
by way of a hint that will at least yield a sufficient eondition, we remark
that the operators defined by matrices are special cases of operators
defined by integral kernels; cf. example (i).

§21. Inverses

An operator A is Znvertible if there exists an operator B such that
AB = BA = 1. The reader should be as competent as the author at
constructing examples of operators which are and of operators which
are not invertible simply by examining the examples given in the pre-
ceding section.

Taeorem 1. If A, B, and C are operators such that AB = CA = 1,
then B = C, and consequently A s invertible.

Proof. B=1-B = (CA)B =CAB) =C-1 = C.

It follows from Theorem 1 that if an operator A is invertible, then
there exists only one operator B such that BA = AB = 1; we shall
write B = A" and call A~ the inverse of A. Standard elementary con-
siderations prove that if A and B are invertible operators and if n is
a positive integer, then the operators A™", AB, and A" are invertible,
and their inverses are given by the equations (4™)™ = A4, (AB)™ =
B™'A7, and (A™7 = (4™ In view of the last relation we may con-
sistently define A®, for invertible operators A and negative integers n,
by A" = (A7H)™"

It is useful to have at hand some geometric conditions for invertibility;
such conditions can be given in terms of the range of an operator. Recall
that the range of an operator A is the set of all vectors of the form Ax;
the range of an operator is always a linear manifold, but it is not neces-
sarily & subspace.

THEOREM 2. If A is an operator and a i3 a positive real number such
that || Az || = allz|| for every veclor z, then the range of A is closed.

Proof. Ify, = Az,,n = 1,2, ---, and if y. — y, then, since we
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have || yn — Umll = || A2 — AZn|| 2, |l 22 — zu |l foralln and m,
it follows that {z,] is a Cauchy sequence and hence that there exists
a vector z such that 2, — z. The continuity of A implies that y = Az
and hence that y is in the range of 4.

TeEOREM 3. An operator A is invertible if and only if ils range 18
dense in § and there exists a posilive real number o such that || Az | =
a || z || for every vector x.

Proof. If A isinvertible and if y ¢ §, write x = A7'y; since Az = ¥,
it follows that the range of A is not only dense in $ but, in fact, co-
incides with . It follows also that, for every vector z,

ol =jlda™ A=zl £ AT - 1] A= ],

ie. that the condition of the theorem is satisfied with a = 1/[| 47 I|.
Suppose now that the range of A is dense and that || Az || 2 all=z || for
all z. According to Theorem 2 we may conclude that the range of Ais
in fact equal to . If Az = Ax., le. Ax, — Az, = 0, then

0= Az, — A || = | 21 — 221l

v

and therefore , = 22 . This implies that not only is it true that every
vector y in O has the form Az for some x in 9, but in fact there is ex-
actly one such z, and a single-valued transformation B of 9 into itself
is defined by writing By = z. Since B is easily verified to be linear, and
since ||y || = || Az || = «|lz || = e« || By ||, it follows that B is an
operator (and we even obtain the inequality | Bll £ 1/a). The rela-
tions ABy = Az = yand BAz = By = x show that AB = BA =1,
and hence that A is invertible (and we even obtain the result B = A7h.

§22. Adjoints

If A is a (not necessarily bounded) linear transformation from
into 9, and if (x, y) = (A, y) for every pair of vectors z and y, then
¢ is a bilinear functional. The elementary properties of the inner product
imply that if A, and A4, are two linear transformations from 9 into
such that (4,2;y) = (4, ) for all z and y, then A, = A, . These facts
together with 3.2 show that if only (4.2, 2) = (Asz, x) for all z, then
already A; = A, . We begin the proper business of this section by show-
ing that the connection between linear transformations and bilinear
functionals goes quite a bit deeper than these superficial remarks.

TuporeM 1. If A is an operator and if o(z, y) = (4z, y) for all 2
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and y, then ¢ ts a bounded bilinear functional and || o || = || 4 ||. If, con-
versely, ¢ s a bounded bilinear functional, then there cxists a unique opera-
tor A such that o(z, y) = (Azx, y) for all z and y.

Proof. If A is an operator and if ¢(z, y) = (Az, y), then | o(z, ¥) | £
HAIl-ilz]i-|ly]| for all z and y and consequently ||¢ || < |{ 4 (|-
If, conversely, ¢ is a bounded bilinear functional and if 7.(y) = (z, ¥)
for all x and y, then, for each fixed z, 4.* is a bounded linear functional.
It fo!lows from the Riesz representation theorem (17.3) that there exists
a unique vector Ax such that o(z, y) = (Ax, y) for all y. The linearity
of the transformation 4 thereby defined is easily verified; its uniqueness
follows from our remarks at the beginning of this section. Since

Az | = (47, 42) = ofz, Az) S lle |l - |21 - || Az 1],

it i.'ollows that || Az |} = |le]|l - ||z |] for all 2. But this implies that
A is bounded and || 4 || £ |l ¢|[, so that the proof is complete.

'Observe that it follows from the first part of Theorem 1, together
with 18.1, that || Al = sup { | {4z, ) |:/lz]| = |ly || = 1} for any
operator 4.

ThneorEMm 2. [If A is an operator, then there exists a unique operator
A*, callied the adjoint of A, such that (Ax, y) = (x, A*y) for all z and
u; A* 15 such that || A* || = || 4 ||.

Proof. Write o(z, y)} = (dz, ¥) and ¢z, ) = ¢*(y, z) for all z and

. Since, by Theorem 1, ¢ is a bounded bilinear functional, and since
this implies that ¢ is a bounded bilinear functional with || ¢ || = || ¢ || =
I Al it follows from the converse part of Theorem 1 that there exists
an operator A* such that ¢(z, y) = (A*z, y) for all z and y and that
A% is such that HA4*| = ll¢|l = || 4]]. Since the uniqueness of A*
is clear, the proof is completed by the obvious computation: (4z, y) =
olz, y) = ¢*@, v) = (A%, 2)* = (x, 4*p).
. The behavior of adjoints can be understood by constructing the ad-
joints of the various operators described in §20. We call special attention
to the example of a multiplication restricted to the analytic functions:
its adjoint is not what at first it might appear to be,

My a K .
I'arorem 3. If A and B are operators and o is a complex number,
then

(i) 4** = 4, » .
(i) (ad)* = a*d*, . ' '
(iii) (A + B)* = A* + B*,
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and

(iv) (AB)* = B*A*; . .

(v) if A 18 invertible, then A* isinvertible and (4%)™ = (A7)*%

Proof. Each of the five assertions is implied by the corresponding
one of the following five identities.

(1) (A*I) y) = (y) A*x)* = (Ay7 x)* = (3.7, Ay)°

(i) (edz, y) = a(dz, y) = alz, A*y) = (z, *A%p).

(i) (4 + B)z, y) = (4z,9) + (Br,y) = (=, A*) + (@ B'Y) =
(z, A*y + B*y) = (z, (4* + B*W).

(iv) (ABz, y) = (Bz, A*y) = (=, B*A*y)

(v) (A7)*A* = (447)* and A*(A7)* = (474

TurorREM 4. If A is an operator, then || A*A || = || A |

Proof It follows from Theorem 2 that || A*A || < || A* ][ - |41} =
| 4 H On the other hand || Az ||* = (4=, Az) = (A*4z,z) = || A*4 ||
||z ||* for every vector z and therefore || A I < 1| 4*4 ||

§23. Invariance

A subspace Pt is invariant under an operator 4 if AM C EJJ?‘, ie. if
Az ¢ M whenever = ¢ M; a subspace M reduces an operator A if both
M and P are invariant under A.

TureoreM 1. If each of a family {M;} of subspaces is invariapt u'rfder
an operator A [or reduces A, then V;M; and N,M; are both invariant

under A [or reduce A].

THEOREM 2. A necessary and sufficient condition that a subspace MM
be invariant under an operalor A 1s that M be invariant under A*.

Proof. By symmetry it is sufficient to prove that the condition is
necessary. If 9! is invariant under 4, and if x ¢ and y e me, then
(z, A*y) = (Az, y) = 0, so that A*y e M, and consequently 9)2
invariant under A*.

We record for later reference an immediate corollary of Theorem 2.

THEOREM 3. A necessary and sufficient condition that a subspace I
reduce an operator A ts that it be invariant under both A and A*,

The difference between invariance and reduction is somewhat subtle
and it is worth while to take a close look at an example. Consider &
Hilbert space which has an infinite sequence {x,} as a basis, n = 1,
2 ..., and define an operator A by A(Z.ca2n) = SeotaZuyr; cf. §20
(iv).. There are many non-trivial subspaces invariant under A; con-
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crete examples may be obtained by selecting a fixed positive integer m
and forming the subspace V{Z.im!n = 1, 2, --- }. We assert, however,
that the only subspaces which reduce A are © and $, or, in other words,
that if a subspace Mt reduces A and contains a non-zero vector z, then
M = . To prove this it is convenient to employ Theorem 3 and it is
necessary, therefore, to discover A*; an immediate computation shows
that A* is defined by A*(Z.a.2,) = Zpani1Zn. If Zpaaz, is the Fourier
expansion of the given non-zero vector z and if m is the lowest positive
integer such that am # 0, then 2 = Z,a.2. = Z,antm1Zaym . Since
the assumption that M reduces 4, together with Theorem 3, shows that
Y= ZnGuymTogm = A"(A*)"z e M, it follows that ¢z, = 2 — y e M,
and hence that z, ¢ 9. Another application of the same reasoning
shows that z, = A" '(A"™ 'z, e M for all n and it follows indeed
that M = $H.

§24. Hermitian Operators
An operator A is Hermitian if A = A*.

TuroreM 1. A necessary and sufficient condition that an operator A
be Hermilzan is that the bilinear functional ¢, defined for every pair of
vectors z and y by oz, y) = (Adz, y), be symmetric.

Proof. A necessary and sufficient condition that ¢(z, y) = «p*(y, x)

for all x and y is that (Az, y) = (y, A*z)* = (A*z, y) for all z and y.

As an immediate consequence of Theorem 1 and what we already
know about bilinear functionals (cf. 3.3, 18.3, and 22.1) we obtain the
following characterization of Hermitian operators and their norms.

THEOREM 2. An operator A 18 Hermitian if and only if (Az, x) is real for
cvery vector z;if A is Hermitian, then || A || = sup { | (A=, z) |:|[2 || = 1}.

Most of the algebraic properties of the set of Hermitian operators
follow quite trivially from the definition. It is, for instance, clear that
a real scalar multiple of a Hermitian operator and the sum of two Hermi-
tian operators are Hermitian, and that the inverse of an invertible Her-
mitian operator is also Hermitian. To describe the situation concerning
products of Hermitian operators, it is convenient now to introduce a
concept and a symbol which we shall have frequent occasion to use.
We shall say that an operator A commuies with an operator B, and we
shall write A < B, if AB = BA.

TaeoreM 3. The product of two Hermilian operators A and B is
Hermitian if and only if A & B.
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Proof. Since (AB)* = BA, the equations (AB)* = ABand BA = AB
are obviously equivalent.

From Theorem 3 and the discussion that preceded it we conclude that
if A is a Hermitian operator and p is a real polynomial, then p(A) is
Hermitian.

The evidence we have collected tends to show (cf. in particular
Theorem 1) that if we think of an operator as a generalized complex
number, then we should think of a Hermitian operator as a generalized
real number. Such an attitude is quite fruitful. It suggests, for instance,
that we may define a concept of positiveness for Hermitian operators;
we shall, indeed, say that a Hermitian operator 4 is positive, in symbols
A = 0,if (Az, ) = 0 for every vector x. It is cbvious that a positive
multiple of a positive operator and the sum of two positive operators
are positive. We may continue further along the lines suggested by these
considerations and define a partial order in the set of Hermitian opera-
tors by writing A < B whenever B — A is positive. This ordering is
proper (ie. if A S Band B £ A, then 4 = B) and transitiwe (i.e. if
A < Band B £ C, then A £ (). We shall have opportunity to refer
to some of these facts later.

§25. Normal and Unitary Operators

If A is any operator, then there exist two uniquely determined Her-
mitian operators B and C such that 4 = B + #C': in this respect also
Hermitian operators imitate the behavior of real numbers. The existence
of what might be called the real and the imaginary parts of A is proved

by explicitly exhibiting them through the equations B = %(A + A%

and C = %(A — A*); uniqueness follows from the observation that

if A = B + 4C, then A* = B* — iC*

The fact that in general the real and the imaginary parts of an operator
fail to commute is what makes operator theory significantly harder than
the corresponding theory of complex numbers and motivates the defini-
tion of a normal operator as one for which this pathology does not occur.
More explicitly, an operator 4 is called normalif 4 « A% if A = B+ C,
with B and C Hermitian, then it is easy to see that a necessary and
sufficient condition for the normality of A is the relation B « C.

TrEOREM 1. A necessary and sufficient condition that an eperalor A
be normal is that || Az || = || A*z || for every veclor x.
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Proof; Since ||Az|® = (dz, Az) = (A*4z, r) and, similarly,
A*c ||° = (A*z, A*z) = (AA*z, z), the identity of the left sides of
these relations is equivalent to the identity of their right sides and the
latter is equivalent to normality.

One source of the importance of the concept of normality is that many
facts about Hermitian operators do not depend on the identity Az = A*»
but only on the identity || Az || = || A*z ||, and, in virtue of Theorem
1, all such facts are valid for normal operators.

There is a special class of normal operators of considerable interest,
namely the operators U which satisfy the equations UU* = U*U = 1;
such operators are called unilary. In the same sense in which Hermitian
operators are generalized real numbers, unitary operators are generalized
complex numbers of absolute value 1. Observe that a unitary operator
is invertible and that in fact unitary operators may be characterized
as those invertible operators U for which U™ = U™

The main reason for the interest of unitary operators is that they are
exactly the automorphisms of $. By an awomorphism of § we mean,
of course, an isomorphism from $ onto $. Observe that since an iso-
morphism is an isometry, it follows that an automorphism is in par-
ticular an operator.

THEOREM 2. A necessary and sufficient condition that an operator {7
be an automorphism of £ is that it be unitary.

Proof. Observe that since (Uz, Uy) = ({*U=z, y), the equation
P'*U = 1 implies and is implied by the identity (Ux, Uy) = (x, ¥).
Sinee a unitary operator is invertible and, consequently, is a one-to-one
transformation from  onto 9, we infer from this observation that a
unitary operator is an automorphism. Since (cf. 21.3) an automorphism
is also an invertible operator, we infer from the same observation that
if U/ is an automorphism then ['™' = [* and hence that U is unitary

§26. Projections

The projection on a subspace I is the transiormation £ defined, for
every vector z of the form z + 4, with z ¢ 9! and y e ¥, by Pz = .
:I'HEOR_EM 1. The projection P on a subspace I 4s an idempolent
(P~ = P) and Hermitian (P* = P) operator; if M = O, then|| P || = 1.
Prog}'. It follows from 13.2 and the projection theorem (whose
Dame is Lereby justified) that P is a single-valued transformation from
D into 9; the fact that P is linear is clear. If : = » + y, with & ¢ M
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and y € M, then ‘

WPz |P=llzll* < = li* + el =12l
so that P is bounded and || P || £ 1. Since Pz = Pr =z = Pz, it
follows that P is idempotent. If It contains a non-zero vector z, then

the fact that Px = z implies that || P || = 1. If, finally, z; = 2; + yj,
with z; e M and y; e M, j = 1, 2, then

(Pz,,2) = (7, 22) = (1, 1) = (21, 22) = (@1, Pzy),

so that P is Hermitian.

Tueorem 2. If P is the projection on a subspace M and if D =
{z:Px = } and Ms is the range of P, then My = Mx = M.

Proof. It follows immediately from the definitions of M, Mz, and
P that O < M. < M. If, on the other hand, z ¢ M, then Pz = 2, s0
that 9 C M, and consequently all these inclusion relations reduce to
equalities.

Taeorem 3. If P is the projection on a subspace M and if = is a
veclor such that || Pz || = || z ||, then Pz = z (and therefore = ¢ M).

Proof. Since z = Pr + (zr — Pz) and since Pz ¢ M and
z — Pz e M, it follows that ||z ||® = || Pz||* + ||z — Pz | % the
fact that || Pz || = || # || implies therefore that ||z — Pz || = 0.

TaeoreM 4. If P is an idempotent Hermitian operator and if M s
the subspace {z:Px = x}, then P is the projection on IN.

Proof. Since P is idempotent, it follows that P(Pz) = Pz for all z;
since P is Hermitian, it follows, for every vector z in 9, that
(z,2 — Pz) = (r,2) — (Pz,2) = OforallzIn other words, Pz ¢ M
and z — Pz « I for all z; the theorem follows from the definition of
projections and the identity z = Pz + (¢ — P2).

We conclude this section with the elementary but exceedingly useful
comment that if P is a projection, then (Pz, z) = || Pz || ? for every
vector z. The proof of the comment is the following self-explanatory
chain of identities: :

(Pz, ) = (PPz, z) = (Pz, P*r) = (Px, Pz) = || Pz|| 2

§27. Projections and Subspaces

In view of the results of the preceding section, there is a natural one-
to-one correspondence between subspaces and idempotent Hermitian
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operators. It is in principle possible, therefore, to express all the geo-
metric properties of subspaces in terms of the algebraic properties of
their projections. We propose in the following sections to show in de-
tail how that may be done; we begin in the present section by describ-
ing the algebraic formulations of invariance, reduction, orthogonal
complementation, and orthogonality.

TrEOREM 1. A subspace N with projection P is tnvariant under an
operator A if and only if AP = PAP.

Proof. If AP = PAP and if x ¢ M, then Az = APx = PAPz ¢ M.
If, conversely, M is invariant under 4, then APz ¢ M and therefore
APz = PAPzx for every vector z.

TeEOREM 2. A subspace MM with projection P reduces an operator A
if and only if P «» A.

Proof. If AP = PA, then, multiplying this relation by P on the
right and on the left, we see that both AP and PA are equal to PAP.
By the formation of adjoints we obtain the result that both A*P and
PA* are equal to PA*P. Since, in view of Theorem 1, the simultaneous
validity of the relations AP = PAP and A*P = PA*P is equivalent to
the assertion that I is invariant under both A and A*, the desired
result follows from 23.3.

THEOREM 3. If P s the projection on a subspace M, then 1 — P s
the projection on M~ and M~ = {x:Pz = 0}.

Proof. A trivial verification shows that 1 — P is idempotent and
Hermitian and hence that 1 — P is the projection on some subspace 9.
By 262,M = {5:(1 — P)xz = z} = [2:Px = 0}, the fact that, there-
fore, N = P~ follows from the definition of projections.

THEOREM 4. If M and N are subspaces with projections P and Q

respectively, then o necessary and sufficient condition for the validity of
all the following relations is the validity of any one of them.

(1) ™M LN

(iia) PQ = 0.
@ib) QP = 0.
(iiia) M =90.
(iiib) QM = 9.

Proof. If M L N, then M < M. Since Qx ¢ N for all z, it follows
(by Theorem 3) that PQr = 0 for all x. If PQ = 0 and if x ¢ N, then
Qxr = zx and therefore Pz = P@Qxz = 0, so that PN = ©. If, finally,
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PR = D, then (again by Theorem 3) N < M and therefore M L N.
These arguments prove the equivalence of (i), (iia), and (iiia); the
equivalence of these relations to (iib) and (iiib) follows by symmetry.
Alternatively we may derive (iia) and (iib) from each other by the
consideration of adjoints, and, after observing that (iiia) and (iiib)
may be expressed in the form N C M and M C N respectively,
derive them from each other by orthogonal complementation.

Justified by Theorem 4 we shall find it convenient to say that two
projections P and Q are orthogonal, in symbols P L Q, if PQ = 0.

§28. Sums of Projections

In order to discuss the theory of sums of projections in the necessary
generality, we have to make a brief digression to describe the concept
of not necessarily finite sums of operators. A family {A;} of operators
will be called summable, and the operator A will be called its sum, in
symbols Z;4; = A, if Z;4;x = Az for every vector z. The fact that a
scalar factor may be distributed through the terms of a sum, as well as
the fact that two sums may be added term by term, follows from the
corresponding theorems (7.1 and 7.2) from the theory of summable
families of vectors. The fact that, more generally, operator multiplica-
tion is distributive with respect to not necessarily finite summation
needs a little bit of proof.

TaeoreM 1. If and A and B are operators and if {A;} 4s o family
of operators such that Z;4; = A, then Z;A;B = AB and 2;BA; = BA,

Proof. The first assertion is easy: since 2;4;y = Ay for every
vector y, we may replace y by Bz. The second assertion is easier: from
the validity of the relation Z;4 ;z = Az for every vector z we conclude,
from 19.2, that Z;BA;x = BAx for all z.

TusoreM 2. If P is an operalor and if {P;} 1s a family of projec-
tions such that 2;P; = P, then a necessary and sufficient condilion that
P be a projection is that P; 1 P, whenever j # k, or, in different lan-
guage, that {P;} be an orthogonal family of projections. If this condition
is satisfied and if, for each j, the range of P; is the subspace I;, then
the range MM of P is V;M; .

Proof. If the family {P;} is orthogonal, then
P2 = (Eij)(EkPk) = Z,'EkPij = Eij =P
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and
(Pz,y) = (ZjPix, y) = Z{P;iz, y)
= Ziz, P;y) = (z, Z;P;y) = (=, Py)

for every pair of vectors z and y. In other words the orthogonality of
the family {P;} implies that P is idempotent and Hermitian, and hence
that P is a projection.

If, conversely, P is a projection and if z ¢ D for some value of k,
then

lzl]®= | Px||® = (Px,z) = 2Pz, 7)
=3 || Pzl 2z Pz || = ||z "

It follows that every term in this chain of equations is equal to every
other term. From the equality of Z; || P;z || * and || Pix || * we conclude
that P;z = 0 whenever j # k, and hence that P;9 = O wheneverj # k;
the orthogonality of the family {P;} follows from 27.4. From the
equality of ||z || and || Pz || we conclude, by 26.3, that = ¢ 9 and
hence that M. < M for all %; it follows trivially that v,;IM; C IN.
Since, finally, P,z ¢ M; for every vector z and every value of j, it fol-
lowsthat Pr = Z,;P;r ¢ Z,M; = V;M; forall x, or, since M is the range
of P, that M C V;M;.

We call attention to the fact that although the proot of Theorem 2

for finite families can be made shorter than the one we presented, its
assertion is non-trivial even in that case.

$29. Products and Differences of Projeclions
The useful fact about products of projections lies near the surface.
TreorEM 1. A necessary and suffictent condition that the product
P = PP, of two projections P\, and P, be a projection is that P, < Py,
If this condition s satisfied and if the ranges of P, P, and P; are M,
M, and M, respectively, then M = My n D, .
Proof. According to 24.3, P is Hermitian if and only if P, « Ps;

‘it is clear that if P; <> P, , then P is idempotent. We may already con-

clude that P is a projection if and only if P, ©& P, ; it remains, assum-
ing that this is the case, to settle the relations among the ranges. Since
the range of a product of two operators is obviously contained in the
range of the first factor, the commutativity of P, and P. implies that
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M < My and P < M, and therefore that M < DYy n V. If, on the
other hand, z ¢ 4 n M, then Pyz = Prx = zand therefore Pr = z,
so that 4 n MW < M.

Before discussing the facts about differences of projections, we ﬁn.d
it convenient to describe the algebraic formulation of the geometric
concept of one subspace containing another. '

Tueorem 2. If M and N are subspaces with projections P and Q
respectively, then a necessary and sufficient condition for the validity of
all the following relations is the validity of any one of them.

@ P Q.
(ii) | Pz || < || Qx || for every vector x.
(iii) m CN.
{iva) QP =P,
(ivb) PQ = P.

Proof. IEP < Q, then||Pz||® = (Pz,z) < (Qv,2) = || Qzl” for
every vector z. If || Pz || < || Q= || for all z, and if we consider an arbi-
trary vector z in M, then ||z || = |[Pz|l = ||Qz| £ |l=]l
(since || Q || = 1). Since this implies that || Qz || = |[ =[], it follows
from 26.3 that @z = 2, i.e. that z ¢, and hence that M CN. T M C N,
then Pz ¢ M and therefore QPx = Pz for every vector z. If QP = P,
then, forming the adjoint of both sides of this relation, we see that
PQ = P.If PQ = P, then -

(Pz,z) = || Pz}’ = || PQz|* = || Qz]|® = @z, 2)
for all z.

TieorEM 3. A necessary and sufficient condition that the difference
P = P, — P; of two projections Py and P, be a projection is that P; = P,
If this condition is satisfied and if the ranges of P, P1, and Py are N,
My , and M, respectively, then M = Dy — D .

Proof. If P is a projection, then

(P.z,%) — (Pex,z) = (Pr,2) = || Pz||*20
for every vector . If, conversely, P» £ Py, then PyP; = P;P, = P:
and therefore
(Py — Py)) = Py — PiPy — PyP + Py = Py — Pa.
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Since P is obviously Hermitian, we may already conclude that P is a
projection if and only if P, £ P ; it remains, assuming that this is

the case, to settle the relations among the ranges. Since P, £ P, im-

‘ plies that P, « 1 — P,, since P, — P, = P,(1 — P,), and since the

range of 1 — P, is Dy , it follows from Theorem 1 that
M=PnMy = Dy — Me.

§30. Infima and Suprema of Projections

Not only is there a natural one-to-one correspondence between sub-
spaces and projections, but this correspondence even preserves the
relations of order: if M and N are subspaces with projections P and @
respectively, then a necessary and sufficient condition that P < @ is
that MM C N. It follows (cf. §10) that the set of all projections is a
partially ordered set with the property that for any family {P;} of
projections there exists a greatest projection (to be denoted by AP;)
smaller than each of them and there exists a smallest projection (to be

‘denoted by V;P;) greater than each of them. (For the infimum and

supremum of two projections P and @ we shall use the symbols P A Q
and P v @ respectively.) In other words the partially ordered set of
all projections is a complete lattice, an isomorphic copy of the complete
lattice of all subspaces. In view of these facts there is a systematic
geometric procedure for finding the infimum and the supremum of a
family {P;} of projections: if, for each j, the range of P; is M;, then
A;P; is the projection with range N;M; and V;P; is the projection
with range V,;M¢;.

It is in general difficult, though not impossible, to describe the in-
fimum and the supremum of a family of projections in algebraic terms.
In the presence, however, of suitable orthogonality, or, more generally,
commutativity assumptions, the job hbecomes easy.

TuroreMm 1. If {P;] is an orthogonal family of projections, then
ViPj = Z;P;.

Proaf. If we knew that the family {P;} were summauable, the result
would be an immediate consequence of 28.2. Instead of proving sum-
mability, however, we find it just as easy to proceed divectly. If, for
each 7, the range of P; is M; and if the range of V;P; is M, then M =
ViM; = Z;M;; of. 13.2. For an arbitrary vector z write z = z + y,
with 2 ¢ 9 and 4 ¢ W, and writez = X;z; with 2; ¢ M, for all 7. Since
Piz; = 8,0, for all 5 and k, it follows that Prz = Z;Pix; = 7 and
hence that Pz = » = Z;2; = Z;P;z2.
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Tarorem 2. If P, and P, are two, commutative projections, then
P1AP2 == P;PzandPl VPp, =P + Pz - P1Pz.

Proof. The assertion concerning Py A P2 is merely a paraphrase of
29.1. To prove the assertion concerning P = Py + P, — PP, we
introduce the usual notation and denote the ranges of P, Pi, and P
by M, Pt , and D respectively. Since P = P+ (1 - Pl)Pi , it fol-
lows that P is a projection and that, in fact, M = PL v (M1 n D).
Since, similarly, P = Py(1 — P3) + P2, and since, therefore, M =
M n M3) v Ms, it follows that Py < M C P v DL and M, C
M C P v D . These relations imply that M = D v M. and hence
that, indeed, P = P, v P:.

Our last result along these lines shows that in the presence of com-
mutativity even the sorely missed distributive law is willing to put
in an appearance. ‘

TueoOREM 3. If P is a projection and if {P;} s a family of projec-
{ions such that P < P; for all §, then P A (V;P;) = V;(P A P)).

Proof. Since PAP; £ Pand PAP; £ V;P; for all j, it follows
that P A P; £ P A (V;P;) for all j and hence that V;(P A P;) =
P a (V;P;). This inequality is a lattice-theoretic trivialitv; to prove
that under our assumptions it becomes an equality requires some more
work. We shall complete our labors by showing that whenever a vector
z belongs to the range of P A (V;P;) and is at the same time orthog-
onal to the range of V;(P A P;), then that vector » must be 0. In
other words we must show that if = = Pz = (V;P)z, f:md . if
(V;(P A P))x = 0, then x = 0. The last-written assumption 1mp11e§
(and here is where we use commutativity) that P;Pr = 0 for all j.
Since Px = z, it follows that P;2 = 0, i.e. that x is orthogonal to the
range of P;, for all 7. Consequently 2 is orthogonal to the range of
V;P; ; the only way to reconcile this with the fact that z belongs to
that range is to conclude that » = 0.

§3]. The Spectrum of an Operator

The spectrum of an operator A, in symbols A(A), is the set of all
those complex numbers A for which 4 — X is not invertible.

The first motivation for considering spectra comes from the finite-
dimensional case. If £ is finite-dimensional, then a necessary and
sufficient condition that an operator be not invertible is the vanishing
of its determinant—a concept which makes no sense in the general,
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not necessarily finite-dimensional, case. Since the determinant of 4 — A
is a polynomial in A, whose zeros are exactly the proper values of A,
it follows that in the finite-dimensional case the spectrum of an oper-
ator is exactly the set of its proper values.

We recall that the concept of proper value need not be defined in
ferms of determinants; according to the geometric definition, a com-
plex number A is a proper value of an operator A if there exists a non-
zero vector x such that Ax = Az. Equivalently: A is a proper value of
A if there exists a unit vector x such that || Az — Az || = 0. This last
formulation of the definition admits a reasonable generalization. We
shall say that a complex number X is an approzimale proper value of an
operator A if for every positive number ¢ there exists a unit vector «

- such that || Az — Az || < ¢; it is easy to verify that an equivalent

requirement is that for every positive number ¢ there exist a non-zero
vector x such that]l Az — Azl < e[{xi]. The approzimate point
spectrum of an operator A4, in symbols TI(A), is the set of approximate
proper values of A.

TueoreEsM 1. If A is an operalor, then 11(A4) C A(A).

Proof. If A € A(A), then A — X is invertible and consequently we
have

Hzli = 14 =N =Nzl = (4 = N7 ]| 4z — M ||

for every vector z. This implies that || Az — Mz|| Z ez ||, with
e = 1/j]{(4 — N)7']|, for every vector z, and hence that X ¢ TI(4).

TrEOREM 2. If A is a normal operalor, then TI(A) = A(A).

Proof. In view of Theorem 1 it is sufficient to prove that A(4) C
II(A). Ii A ¢ II(A), then there exists a positive real number £ such that
i Ay — My i 2 ey i} for every vector y. Since A — A is just as normal
as A, and since (A — A)* = 4A* — A% it follows (cf. 25.1)
that || A*y — A*y || = ¢ || y || for all y. In order to prove that X ¢ A(4),
i.e. that 4 — X is invertible, it is sufficient, in view of 21.3, to prove
that the range of A — X is dense, or, equivalently, that the orthogonal
complement of the range is £. Clearly, however, if a vector y is orthog-
onal to the'range of 4 — X, then 0 = ((4 — Nz, 9) = (z, (4* — M)
for all 2, and hence A*y — A*y = 0. Since || A*y — Myl =z ¢|ly |,
it follows that y = 0 and the proof is complete.

According to Theorems 1 and 2, the spectrum, at least for normal
operators, is a more or less natural object. A study of some examples,

i
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notably of the multiplication operators described in §20(ii), sheds con-
siderably more light on the subject. By’ way of illustration we mention,
without proof, that the spectrum of the multiplication operator defined
by a bounded measurable function k is the essential range of h. By
the essential range of a complex-valued measurable function 2 on a
measure space with measure u we mean the set of all those complex
numbers A which have the property that u(hN(A) # 0 whenever M
is an open set containing A. This concept is a slight measure-theoretic
variant of the usual concept of the range of a function and is not to be
confused with the range of the multiplication operator defined by the
function; the former is a set of complex numbers and the latter is &
set of vectors.

§32. Compactness of Spectra
We begin with an auxiliary result on invertibility.

TueoreM 1. If an operator A is such that || 1 — A}| < 1, then A 15
invertible.

Proof. 1f we write||[1 — A|] = 1 — @, so that 0 < a = 1, then
Azl =llz — (= — A2)|} 2 |l2 | — || — Az ]
zlz]l - (0 —-afz]l=ajzll

for every vector z. It follows from 21.3 that it is sufficient, in order to
prove the invertibility of 4, to show that the range I of A is dense
in §. We shall establish the density of M by proving that if y is an
arbitrary vector, and if & = inf {||y — =z {j:x ¢ M}, then 6 = 0. If
& > 0, then there exists a vector z in % such that (1 — &)||y — = || <&
Since M contains both z and A(y — ), and therefore alsoa + Ay — ),
it follows that

sy —2) — Ay -l Sl = Af-fly — =l
=1 -aly—-zll <3
and we have reached the desired contradiction.

TueoreM 2. If A is an operator, then A(A) is @ compact subset of
the complex plane; if N e A(A), then | M| Z || A]].
Proof. TIf Ao € A(A), so that A — ) is invertible, then

1 — (4 -2 =Nl =4 =74 —N) = (4 =Wl
A =7 A = N
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and consequently |[ 1 — (A — A) (4 — A)|j < 1 whenever |A — X
is sufficiently small. It follows from Theorem 1 that (4 — A)™'(4 — )
is invertible and therefore that A — A is invertible whenever | A — Mo |
is sufficiently small. This implies that the complement of A(A) is an
open subset of the complex plane; it remains only to prove the second
assertion of the theorem. If {A| > || A ||, then || A/A || < 1 and there-
fore, again by Theorem 1, 1 — (4/)\) is invertible. It follows that
A € A(A) and hence, contrapositively, that if A ¢ A(4), then
(A =1141.

Even in the absence of normality, the approximate point spectrum
tries hard to act like the spectrum; as a sample of such behavior we
mention that Theorem 2 remains true if A is replaced by II. The proof
is easy. If Ay ¢ II{A), then there exists a positive number & such that
HA — Nzl = ¢ for all unit vectors z. Consequently if = is a unit
veetor and if | A — N} < €/2, then

ldz = Ml 2 l{de — Nzli—[d — N2 3,

s0 that A ¢ II(«1). This means that the complement of II(4) is open;
the rest of our assertion iz an immediate consequence of 31.1.

§33. Transforms of Spectra

It is interesting to observe what happens to the spectrum of an
operator when it is subjected to various elementary transformations.
1f, for instance, A and B are operators, and if B is invertible, it is easy
to see that A(4d) = A(BT'AB). (In view of the identity B~(4 — \)B =
BT'AB — A, the invertibility of the right term is equivalent to the in-
vertibility of 4 — X.} In this section we examine the behavior of the
spectrum with respect to the formation of polynomials, inverses, and
adjoints,

THeorEM 1. If A 4s an operalor and p s o polynomial, then
A(p(4)) = p(A(4)) = [P(V):N e A(A)}.

Proof. For any complex number A\ there exists a polynomial ¢
such that p(A) — p(h) = (A — Ao)y{A) identically in A. It follows that
plA) — p) = (A4 — N)g(d); we assert that if Ay e A(4), then B =
(4 — Mg(A) is not invertible. (If it were, then we should have

(A —N)-q)B*=BB'=1=B"B
= B (4 — M)g(4) = B'g(4)-(4 — W),
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ie.A — Ao would also be invertible.) Since this means that p(4d) — {No)
is not invertible, we have proved that p(\o) e A(p(4)) and hence
that p(A(4)) C A(p(A)). Suppose on the other hand that X ¢ A(p(4)),
and let Ay, -+, A be the (not necessarily distinct) roots of the equa-
tion p(A) = o . It follows that p(4) — o = alAd — A) - (4 — \)
for a suitable non-zero complex number «, and hence that A — X; must
fail to be invertible for at least one value of j, 1 £ j < n. For such a
value of j we have \; e A(4) and p(A;) = X, 50 that Ay e p(A(A)) and
therefore A(p(A4)) C p(A(A)).

TreoreM 2. If an operator A 1s tnvertible, then A(ATY = (A(A)) ™ =
(T e A4A)). |

Proof. Observe that since saying that 4 is invertible is the same as
saying that O is not in A(4), the symbol (A{A))™" makes sense. The
identity A — N7 = (A — AM'A™! shows that if X ¢ A(4), so that
A — ) is invertible, then A~ — X7 is invertible, so that X~ ¢ AATY.
In other words A(A™Y) C (A(A))™ and our theorem is half proved.
The reverse inequality follows by the elegant triek of applying what
we have already proved to 47" instead of A.

TueorEM 3. If A is an operator, then A(4%) = (A(A)* =
{(A*:\ e A(4)].

Proof. If A ¢ A(A), so that 4 — X is invertible, then 4* — \*is
invertible, and therefore A* ¢ A(A*). Since this proves that A(4¥) C
(A(A))*, the proof may be completed just as in Theorem 2; to obtain
the reverse inequality it is sufficient to apply the inequality already
proved to A* instead of A.

§34. The Spectrum of a Hermitian Operator

Tf 33.3 is applied to a Hermitian operator, it yields the result that
the spectrum of a Hermitian operator is symmetric with respect to the
real axis. Actually the situation is much simpler.

TueoreM 1. If A is a Hermitian operator, then A(A) is a0 subset of
the real axts.

Proof. If \ is not real, then, for every non-zero vector z,
0<|A=a|lz]l* =4 — Nz, 2) — (4 — M)z, )]
= (A — Nz, 2) = (z, (4 — N s 2| 4z - Ariisfiadls
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the desired result follows from the fact (cf. 31.2) that for Hermitian
operators the approximate point spectrum and the spectrum are the
same. )

Our next result is one of the most powerful tools for the study of
Hermitian operators; it asserts that the norm of such an operator can
be calculated from its spectrum.

Tusorem 2. If A is a Hermitian operator, then||A|l= o =
sup {| M |:N e A(A)}.

Proof. The fact that a = || A ||, does not depend on the Hermitian
character of A; it follows from 32.2. We shall prove that equality
prevails by showing that || A || * ¢ II(4%); in view of 31.1 and 33.1 we
shall then be able to conclude that = || 4 |[ € A(4) for a suitable choice
of the ambiguous sign. The proof of the promised relation is based on
the identity

| A% — Ve ||® = | A% " — 2 || Az 1 * + M= 1%

valid (since 4 is Hermitian) for all real numbers A and all veetors z.
If {z,] is a sequence of unit vectors such that|| Az.|| = [/ 4|, and
if A\ =] A, then it follows from our identity that

| A2, — Nza ||* < (1A 1] Aza )" — 22| Aza || * + 2
= — VM| 4z ||*— 0
and hence that we do indeed have || 4 || * « II(A%).

One of the useful conclusions we can draw from Theorem 2 is that the
spectrum of a Hermitian operator is not empty. This is not a trivial
conclusion. We shall obtain the corresponding fact for normal operators
only after the application of a lot more relatively deep analysis. We
hereby report that the spectrum of an arbitrary operator is also not
empty; since we shall have no occasion to make use of this fact, we
shall not enter into its proof.

To state our last result, an easy corollary of Theorem 2, we introduce
some new notation. If A is an operator and if f is a complex-valued
function on the spectrum of A, we shall write

N.(f) = sup {{fQ)]:X € A(4)}.

TueoreM 3. If A is a Hermitian operator and p 1s a real polynomial,
then || p(A)|| = Na(p). »
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Prc;oj. Applying first Theorem 2 (to p(A4) instead of A) and then
33.1, we obtain '
sup {| A [:N e A{p(4))}

sup {| A [:x e p(A(A))}
sup {[ p(A[:N € A(A)}.

Il p(A)]

1l

f

H

§35. Spectral Heuristics

We are now in a position to make a deep analysis of the structure of
Hermitian and, more generally, normal operators. In order, however,
to motivate and illustrate not only the method of proof but even the
statement of the facts, it is advisable that we make a brief digression
and examine an analogous but more elementary theory.

Consider the statement that a real-valued, bounded, measurable
function f on a finite measure space X can be uniformly approximated
by simple functions, More precisely: to any positive number & there
corresponds a finite, disjoint family of measurable sets, or, equivalently,
a finite, disjoint family {x;} of measurable characteristic functions, and
a finite family {X;] of real numbers, such that | /() — Z;\x;(0)] < ¢
for all ¢ in X.

How does the usual proof of this theorem go? If the bounds of f are
« and B, sothat @ < f(t) < gforall ¢ in X, we may subdivide the interval
[«, B] into a finite, disjoint family {3 ;} of intervals of length less than
¢, and, for each j, we may select a number \; in M;. In the subset
(M ;) of X the values of f are all within £ of A;, and therefore we obtain
the desired result by setting x; equal to the characteristic function of
FUM ;). (Note that since the value at a point ¢ of the characteristic
function of f~ (M) is equal to the value of the characteristic function
of M; at f(¢), we have x;{f) = xa,(f(t)) for all £.) If, for any Borel set
M in the real line, we write E(M) for the characteristic function of
the subset (M) of X, our result may be expressed by writing

|f— ZEW)| < e

The expression ;M E(M;) looks suspiciously like the sort of sum

that occurs in various approaches to integration. The function E is a
set function, a measure in some sense, which associates a certain char-
acteristic function on the space X with each Borel set in the real line.
Since, for each j, \; is a point in the element M ; of a certain partition
of the interval [«, 8], the integral that appears to be lurking in the

§35. SPECTRAL HEURISTICS ' 57

background has the form [ AdE(A). It is not a difficult task to con-
struct a theory of integration in which symbols such as [ A dE(A\) make
sense, although of course our heuristic hints do not constitute such a
construction.

Proceeding formally, we may summarize our comments as follows.
The approximability of a real-valued, bounded, measurable function
f by simple functions can be expressed by writing f = [ A dE(\), where
E is the somewhat peculiar, function-valued, “measure” whose value
at a Borel set M in the real line is the characteristic function of f~'(M).
The measure £ has some unusual properties and reflects in some in-
teresting ways the structure of the function f. Among its properties we
mention its idempotence ((E(M))* = E(M) for every Borel set M) and,
more generally, its multiplicativity (E(M n N) = E(M)E(N) for every
pair of Borel sets M and N). The way in which E reflects the properties
of f is illustrated by the assertion that, if M is a Borel set, a necessary
and sufficient condition for the vanishing of E(M) is that M be dis-
joint from the range of f.

The analogs of bounded, real-valued, measurable functions in Hilbert
space theory are bounded, Hermitian, linear transformations, i.e.
Hermitian operators. Since a function is the characteristic function of a
set if and only if it is idempotent, it is clear on algebraic grounds that
the analogs of characteristic functions are projections. The approxi-
mability of functions by simple functions corresponds in the analogy
to the approximability of Hermitian operators by real, finite linear
combinations of projections. The purpose of such an operatorial ap-
proximation theorem is, just as in the analogous functional situation,
to provide a tool for deriving and understanding the deep structural
properties of complicated objects in terms of simple objects. For a
Hermitian operator, just as for a real function, we shall be able to con-
struct a “measure” F with the multiplicative property mentioned in
the preceding paragraph and to recapture the operator by means of an
integral. The measure E will reflect the properties of the given operator
in many ways; in analogy with our remarks concerning the range of a
function, for instance, it will be easy to characterize the spectrum of
the operator in terms of E.

The theory for complex-valued, bounded, measurable functions is no
harder than for real functions. The proper analog of a complex func-
tion turns out to be not any old operator but a normal operator; it will
be technically convenient to derive the complex (normal) generaliza-
tion from the real (Hermitian) special case.
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It is customary to motivate the theory we intend to develop not by
such analytic considerations as we have indicated, but by reference to
the algebraic facts concerning operators on finite-dimensional spaces.
It is a good idea to keep both in mind, and, specifically, the reader is
advised to think through the relation between our past and future
comments on the one hand and the familiar reduction of a Hermitian
matrix to diagonal form on the other hand.

§36. Spectral Measures

If X is a set with & specified Boolean s-algebra S of subsets, a speciral
measure in X is a function F/ whose domain is § and whose values are
idempotent, Hermitian operators (projections) on &, such that
E(X) = 1 and such that E(U,M,)) = Z.E(M,) whenever {M.} is a
disjoint sequence of sets in S. A set X with a specified Boolean s-algebra
S of subsets is usually called a mcasurable space and is denoted by
(X, S); the sets belonging to S are called the measurable subsets of X.
A typical example of a spectral measure is obtained by letting X be not
only a measurable space but a measure space with measure g, consider-
ing the Hilbert space 2:(u} in the role of O, and writing EQMDf = xuf
whenever M ¢ S and f ¢ %(x) (where x,, denotes, of course, the char-
acteristic function of the set A7). The standard techniques of elementary
measure theory show that if E is a spectral measure, then E@D) =0
and E is finitely additive (i.e. EU,M ;) = =;E(A;) whenever {1/} is a
finite disjoint family of measurable sets).

TuroreM 1. If E 1s a finitely additive, projection-valued set Tunction
on the class S of all measurable subsets of a measurable space (zn particu-
lar if E 1s a spectral measnre), then E 1is monotone and subtractive, 1.c. ¥f
Mand N are in S and M C N, then E(A) £ FE(N) and E(N — M) =
E(N) — E(AM).

Proof. Since E(N) = E(3) + E(N — il), the fact that £ is sub-
tractive is trivial; monotony follows from 29.3.

TuroreM 2. If E is a finitely additive, projection-valued set function
on the class S of all measurable subsets of a measurable space (Zn particu-
lar if E is a spectral measure), then F 1s modular and multiplicative, i.c.
if M and N are in S, then

E(MuN)+ EMaN) = EM)+ EN)
and

E(M n N) = E(M)E(N).
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Proof. If we add E(M n N) to both sides of the equation
E(MuN)=FEM—-N)+ EMnN)+ EWN — M),
we obtain
E(MuN)+ E(MnN) = (E(M —N)+ E(M nN))
+ (E(N — M)+ E(M nN)) = E(M) + E(N).

This already proves modularity. Since, by Theorem 1, E{(M n N) =
E(M) £ E(M v N), it follows that EQM) E(M n N} = E(M n N) and
EMDE(M u N) = E(M). If, therefore, we multiply both sides of the
modular equation by E(Af), we obtain E(M) + E(M n N) = E(M) +
E(A) E(N), and this proves that E is muitiplicative.

We remark that the multiplicative property of E implies in particu-
lar that E(M) < E(N) whenever A and N are in S.

THEOREM 3. A projection-valued function E on the class S of meas-
urable subsels of @ measurable space X is a spectral measure if end only if

(@) EX) =1,
und

(#%) for each pair of vectors = and y, the complex-valued set function p
defined for every M in S by p(M) = (E(M)x, y) is countably addilive.

Proof. If E is a spectral measure, then (i) holds by definition and
(ii) follows from the fact (7.3) that an inner produet one factor of
which is an infinite sum may be formed term by term. Suppose, con-
versely, that (i) and (ii} hold. If M and N are disjoint measurable sets,
then the identity

(EGu Nz, p) = (EQDx, y) + (EN)z, y) = (EM) + EWN)), y)

proves that E(3 u N) = E(M) + E(N), ie. that F is finitely additive
(and therefore multiplicative). If, similarly, {1 .} is a disjoint sequence
of measurable sets with U,3f, = M, it is tempting to argue that

(E(M)z, y) = Z(EMuz, ) = (Z.E(M.))z, y)

for all 2 and y, and hence that E(3) = Z,E(M,). The only thing wrong
with this argument is that Z,FE(M,) need not make sense; we shall
finish the proof by showing that it does. The multiplicativity of
implies that {E(M.,)} is an orthogonal sequence of projections and
hence that {E(M.)z} is an orthogonal sequence of vectors for every z.
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Since

Z. | EQM)z || = ZiE(Ma)r, 2) = (E(M)z, 2) = || B3z || "

it follows that the sequence {E(M,)z} is summable. If Z.E(M.)z = Az,
then it is clear that A is a linear transformation of © into itself; the
chain of equations used to prove the existence of A implies also that A
is bounded (and, in fact, that || 4 || = 1). ‘

§37. Spectral Integrals

Throughout this section we shall work with an arbitrary but fixed
measurable space (X, S); the expression “spectral measure” will always
refer to a spectral measure in X. It will be convenient to use also the
symbol B for the class of all complex-valued, bounded, measurable
functions on X, and to write N(f) = sup {|{f(\)[:\ ¢ X} whenever
feB.

TuroreyM 1. If E is a spectral measure and if f ¢ B, then there exists
a unique operator A such that (Az, y) = [ f\) d(B(N)z, y) for every pair
of vectors z and y; the dependence of A on f and E will be denoted by writing
A = JfdE = [ f(\) dE(\).

Proof. 'The boundedness of f implies that the integral o(z, ¥) =
| O\ d(EQ\)z, y) may be formed for every pair of vectors x and y; an
obvious computation shows that ¢ is a bilinear functional. Since
le(z, )} = [1FMId|EQ=]|® = N ||z |}% it follows, by 18.2,
that ¢ is bounded and hence, by 22.1, that there does indeed exist a
unique operator satisfying the conditions required of A.

TugoreM 2. If E is a spectral measure, if f and g are in B, and if a
15 a complex number, then

[ («f)dE = af fdE, [+ g)dE = [fdE + [gdE,
and

[ f+dE = (f fdE)".

Proof. The proofs of all three assertions are similar and almost
automatic. To prove, for instance, the last one, we write A = [fdE
and B = [ f*dE, and we observe that the relations

(z, By) = (By, 2)* = (J f*() A(EN)y, 2))*
= [ f0) d(z, EQ)y) = [ FO) dEN)z, y) = (Az,9)

are valid for every pair of vectors z and y.
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TueoreM 3. If E is a speciral measure and if f and g are in B, then
(f FAEXS gdE) = [ fgdE.

Proof. We write A = [ fdE and B = [ g dE. If the (complex) meas-
ure g in X is defined for every set M in S by u(M) = (E(M)Bxz, y),
where z and y are any fixed vectors, then

(M) = (Bz, E(M)y) = [ g(\) dEN)z, E(M)y) = [ gM)dEM)EN)z, )
= [gQ) dEGL n Nz, y) = [ug) dEN)z, y)
for every M in S. It follows that
(ABz,y) = (A*y, Br)* = (J /*(\) d(EQ)y, Bz))*
= ([ f*0) dly, EQ)Bx)Y* = [ f(A) d(E(\)Bz, y)
= [fN)du(n) = [ g d(EN)z,y)
and hence that AB = f fgdE.

It follows from the preceding results that if £ is a spectral measure,
then fdEQ\) = E(X) = 1, and, more generally, I %, A AEQN) =
[«dEQ) = E(M) for every M in S (Theorem 1); if f and g are in B,
then [ fdE <> [ g dE (Theorem 3); and if f ¢ B, then f fdE is normal
(Theorem 2 and the commutativity result just mentioned). To state
our last result concerning the algebraic behavior of spectral integrals,
we introduce a convenient notation: if E is a spectral measure and B
is an operator, we shall write £ < B for the assertion that E(M)— B
for all M in S. We remark, for example, that if f ¢ B, then £ & [ fdE.

THEOREM 4. If E is a spectral measure, if B is an operalor such that
E o B,and if f ¢ B, then [ fdE < B.
Proof. 1f [ fdE = A, then

(ABz,y) = [ fON) d(EQ)Bz, y) = [ f0) d(BE(MN)z, y)
= [ f\) d(E(\)z, BYy) = (A=, B*y) = (Bdz, y)

for every pair of vectors z and y.

§38. Regular Spectral Measures

‘Throughout this section we shall assume that X is a locally compact
Hausdorff space and that S is the o-algebra of all Borel sets in X; except
for this specialization, we continue to follow the conventions of the
preceding section.
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A spectral measure E is regular if E(My) = VE(M) for every Borel
set M,, where the supremum is extended over all compact sets M
contained in M. The spectrum of a spectral measure E, in symbols
A(E), is the complement in X of the union of all those open sets M for
which E(M) = 0. A spectral measure is compact if its spectrum is
compact. We observe, concerning these definitions, that they cannot
even be formulated, let alone exemplified, if X is not a topological
space. On the other hand as soon as X is a topological space these
definitions make sense; we restrict attention to the case of locally
compact Hausdorff spaces mainly because that is the limit of the gener-
ality we need for any of our applications.

TuroreM 1. If E is a regular spectral measure and A = A(E), then
A 15 a closed set such that E(X — A) = O (and therefore E(A) = 1).

Proof. Since X — A is, by definition, a union of open sets, A Is
closed. To prove that E(X — A) = 0, it is, in view of regularity, suffi-
cient to prove that E(M) = 0 whenever M is a compact subset of
X — A. The definition of the spectrum of E implies that every point
of X — .\, and therefore in particular every point of 3, is contained
in an open set on which the value of E vanishes. Since 1/ is compact,
M may be covered by a finite number of such open sets, and it follows
indeed that E(M) = 0.

It is frequently convenient to consider spectral integrals such as
{ fO) dE(N) even if the complex-valued measurable function f is not
bounded; the theory of such integrals remains simple as long as we
assume that f is, so to speak, bounded with respect to the regular spec-
tral measure E. More precisely what is needed is that f be bounded on
the spectrum A of E. If that is the case we define [fdE tomean |, fdfl =
f xaf dE; in view of Theorem 1 this definition will lead to a consistent
theory. Another way of accomplishing the same purpose is to replace
the space X by the subset A and the spectral measure & in X by the
spectral measure in A obtained by restricting the domain of definition
of E to Borel subsets of A only. In connection with this circle of ideas
. it is natural to write Nx(f) = sup {|fO\)]:N € A(E)} whenever £ is a
spectral measure and f is a complex-valued measurable function bounded
on A(E).

Tueoresm 2. If E is a compact and regqulur spectral measure wilh
spectrum A and if f is a complex-valued continuous function on X, then
S rdE il = Ne(f).

Proof. We write [ fdE = A, and we assume tirst that jis real.

’
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Since it follows from the preceding section that A is Hermitian, we
have

[ A ]l = sup {|{(Az, z}|:]| 2 || = 1}
Since, however,
(Az, )| < fal | || EM)=z 1 * < Ne(f)-ll 2]

for every vector z, it follows that {{ 4 || £ Ng(f).

If Nx(f) = 0, let € be a positive number such that ¢ < Ng(f). We
may and do assume, without any loss of generality, that N.(f) =
sup {fQ):N € A} IE M = {A:f(A) > Ng(f) — ¢}, then M is an open
set and M n A = 0; it follows that E(Af) # 0. If x is a non-zero vector
in the range of E(M), then E(X — Nz = E(X)z — E(M)x = 0 and
therefore
(A, 2)| = |f JO) dEMa, 2)| = | [ fO) d|| E0 ||* |
= (Ne(f) — -l =™

Tt follows that || A || = N&(f) — ¢ for every positive number ¢ and
hence that || A || = Nz(f).
If f is complex, then, by 22.4,
WA |[® =l A*A | = [|(fr*dEX[ fAE)N = | [ S/ B |

Since f* = | f|? is real, we have
A7 = sup {1 FO)] :x e A} = Ne(| f]%) = (Na(N)"

§39. Real and Complex Spectral Measures

A spectral measure defined on the class of all Borel sets of the com-
plex plane is called a compler spectral measure. Our first result is that
the results of the preceding section are applicable to complex spectral
measures.

TuEOREM 1. FEvery complex spectral measure 1s regular.

Proof. The proof of this theorem may be carried out by imitating
the proof of the corresponding fact for ordinary numerical measures.
The main tool of that proof is the separability of the complex plane.
As a compromise between reproducing here all the details of a standard
technique on the one hand and saying that the proof is left as an exer-
cise for the reader on the other hand, we shall reduce the theorem as
stated to the numerical case. Suppose then that E is a complex spectral
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measure and that M, is a Borel set in the complex plane. If M is a com-
pact subset of My, then E(M,) = E(M) and consequently

E(My) = VE(M).

We must show that if a vector z in the range of E(M,) is orthogonal to
the range of E(M) for every compact subset M of My, then z = 0.
If, however, (M) = (E(M)z, z) for every Borel set M, then, by the
- regularity of numerical measures, p(Mo) = sup (M), where, again,
the supremum is extended over all compact subsets of M, . Since, by
hypothesis, u(M) = 0 for each such compact set, it follows that

u(My) =0
and hence that z = E{(My)z = 0.

Our next result is the reason and justification for using the word “‘spec-
trum” in connection with spectral measures.

TueoreM 2. If E is a compact, complex spectral measure and if
A = [XdE), then A(E) = A(4).

Proof. If o € A(E), then there is an open set M such that X e M
and E(3M) = 0. If M’ is the complement of M and & is the distance
between A\, and M’, then

| Az — Nz |I* = ((4 — M)¥A — M)z, 7)
= [ (A — M)*A ~ N)d(EQN)z, 2)
for every vector z. Since E(M) = 0, it follows that
| Az = Nz |' = [ar | A = M [(d(EM)z, 2) 2 & || 2 |’
for all z and hence that ’
M€ II(A) = A(A).

If, conversely, A\ e A(E), then we have E(M) # O for every open set
M containing A, . Hence if & is any positive number and

M= [A:]h = A < 8},

then the range of E(M) contains some unit vector z. Since, arguing as
before, || Az — Xz ||° = fu | N — X Pd(EQ\)z, 1) < &, it follows that
)\o € A(A)

A spectral measure defined on the class of all Borel sets of the real
line is called a real spectral measure. It follows from Theorem 1 (cf. 38.1)
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that a complex spectral measure whose spectrum is contained in the
real axis may be viewed as a real spectral measure; conversely, of course,
every real spectral measure may be viewed as a complex spectral meas-
ure whose spectrum is contained in the real axis. Consequently any
result valid for all complex spectral measures is valid for all real spectral
measures as well.

§40. Complex Spectral Integrals

Teeorem 1. If E, and E, are compact, complex spectral measures
such that [ NdE\(\) = [ NdEs(A), then E, = E;.

Proof. Let 8(A) and v()\) be the real and imaginary part respectively
of the complex number A. If for an arbitrary but fixed vector z we write
w(M) = (Ef(M)z, ) and uo(M) = (Esy(M)z, z), then, since p; and u,
are real (and in fact non-negative), it follows that [ 8dw, = [ Bdu, and
[ydu = fvdus. By polarization we obtain the result that

[BdE, = [BdE:
and
J-'YdE]_ = f‘Yd.Ez.

The additive and niultiplicative properties of spectral integrals imply
that if p is any real polynomial in two variables, then

I pBM), v\ d(ENz, ) = [ pBO) (M) d(E(N)z, ¥)
for every pair of vectors z and y. It follows that
| (B, y) = (EM)z, )
for every Borel set M and all z and y, and consequently E, = E; .

Theorem 1 says that a compact, complex spectral measure is uniquely
determined by one of the simplest spectral integrals that can be formed,
ie. the integral of the function f defined for every complex number
A by f0) = A. Since it is true (cf. our heuristic promise in §35 and its
fulfillment in §44) that every normal operator has the form [NdE(Q\)
for a suitable compact, complex spectral measure E, Theorem 1 is the
assertion that the representation of a normal operator by such an integral
is unique.

Tueorem 2. If E is a compact, complez spectral measure and +f B is
an operator such that both { N\dE(X) and { N*dE(N) commute with B, then
E«— B,
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Proof. We use the notation established in the proof of Theorem 1.
Since B(A) = %()\ + A% and y(A) = ;—i()\ — A*), our assumptions imply
that if p is any real polynomial in two variables and if

A = [p(BA), v(\))dER),
then B «> A. It follows that
[ p(B), YO A(EMz, BY) = (Az, BY) = (ABz, y)
= [ p(BN), Y)) d(E()Bz, 1)
for e;rery pair of vectors z and y. Since we may infer that
(BE(M)z, y) = (E(M)z, BYy) = (E(M)Bz, y)

holds identically in the Borel set 3 and the vectors z -and y, the proof
is complete.

Theorems 1 and 2 are of course true for real spectral measures in
particular; the proofs for this special case are slightly easier than the
ones we presented. We observe also that even the stzftemf.znt of Theorem
2 becomes simpler if the spectral measure E is real, since in that case the
vanishing of E on the complement of the real axis implies that

[NIEQ\) = [A*dEQ).

In other words if E is a compact, real spectral measure and if B is an
operator such that I NdE(A) & B, then E « B . Itisa Yemarkable and
useful fact that this strengthened version of Theorem 2 is true for com-
plex spectral measures also, but it will take us all the work of the follow-
ing two sections to prove that. . )
We end this section by reminding the reader of the existence of 37.4.
That theorem shows that whenever we have accumulated enough as-
sumptions to justify the conclusion of Theorem 2, then we may u.lsu
conclude that [ fdE < B for every complex-valued, measurable function
f which is bounded on the entire complex plane, or at any rate on the
spectrum of the spectral measure E. :

§41. Description of the Spectral Subspaces

TreoreM 1. If A is a normal operator and i § = §(A) s the set of
all vectors x such that || A"z || < ||z || for every positive inleger n, t{len
& is a subspace. If B 1s an operator such that A < B, then § 1s invarignt
under B,
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Proof. Let 9 be the set of all those vectors z for which the sequence

{ll A"z ||} is bounded. If x and y are in M and if « and 8 are complex
numbers, then the relation

1A ez + BNl = | al-ll 47| + [B]-]l A7y [,

valid for every positive integer n, shows that ax + By ¢ M. If z ¢ M,
then the relation ||A"Bz || = || BA™ || £ || B||-|| A" ||, valid for
every positive integer n, shows that Bz ¢ M. In other words M is a
linear manifold and I is invariant under B; it is clear that § C M. It
is not at all obvious that Pt is a subspace (i.e. that I is closed) and,
although the fact that § is closed is easy to see, it is not at all obvious
that § is a linear manifold nor that § has the desired invariance property.
All these difficulties can be cleared up in one fell swoop by showing that
§ = IM; that is what we propose to do. It is sufficient to prove that if
a vector z is such that || A"z || > a|{ z || for some positive integer m
and for some number «, « > 1, then the sequence {|| A"z ||} is not
bounded. But this is easy: an inductive repetition of the argument used
to prove the chain of relations

Lzl < | A"z |f = (A", A7) = ((A")*A"z, 2)
< @A Nzl = [ A7l

shows that {| A"™z || > o ||z || for every positive integer n. (The
normality of A wasused, via 25.1,in the step || (A™)*A™z || = || A*"z || .)

2
(44

Suppose now that E is a compact, complex spectral measure and that
4 is the normal operator [ AdE(A). For each complex number N\ and
each positive real number ¢ we shall write §(}, ¢) for the subspace

1 . : 1
%(;(A - )\)) associated with the normal operator (A = ) in the

manner described by Theorem 1. More explicitly §()\, €) is the set
(subspace) of all vectors x such that || (4 — A"z || £ £" || z || for every
positive integer n; roughly speaking a vector x in §(A, £} may be de-
scribed as an approximate proper vector with proper value A and degree
of approximation . (Use of this language is not to be confused, how-
ever, with the technical term defined in §31.) For every set M of com-
plex numbers and for every positive real number ¢, we shall write
M, &) = VauF, 6), and FM) = N, F(M, £). As the final piece of
new notation we introduce G(M) for the range of E(M) whenever M
is a Borel subset of the complex plane. In the next section we shall show
that if M is compact, then F(M) = G(M).

The point of our procedure is this. We are trying to prove that when-
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aver A commutes with an operator B, then E «»> B. For this purpose
we need a direct, geometric characterization of G(M) in terms of A,
and that is exactly what the equation F(M) = G(M ) (whenever it is
valid) gives us. Consideration of the subspaces §(M) is quite natural
when they are viewed from the proper value point of view mentioned
in the preceding paragraph.

We conclude this section by borrowing the already announced result
of the next section and, on the basis of that loan, proving the main
commutativity theorem.

Tueorem 2. If E is a compact, complex spectral measurc and if B
is an operator such that { \dEQ\) < B, then E < B.

Proof. Using the notation established above, we begin by observing
that, according to Theorem 1, F(A, ¢) is invariant under B for all X
and ¢. Since the span and the intersection of invariant subspaces are
themselves invariant, it follows that the subspace (M )} is invariant
under B for every set M of complex numbers. If M is compact, then
(by §42) we may conclude that G(3) is invariant under B. The regu-
larity of E shows then that (M ) is invariant under B for every Borel
set M. Since if M is a Borel set, then so is its complement M !, and since
M) = (G(M )", it follows that G(37) reduces B for every Borel set
M, and this is a paraphrase of what we have promised to prove.

§42. Characterization of the Spectral Subspaces

We continue to use the symbols E, 4, G, and §, in the sense in which
they were defined in the preceding section.

TaeorEM 1. If M is a Borel subset of the complex plane, then
E(M) C FM).

Proof. Let ¢ be a fixed positive number and let {;} be a disjoint,
countable family of non-empty Borel sets of diameter less than ¢ such
that U;M; = M. For each index j, let \; be a complex number in 3 ; .
If r ¢ §(M) and if z; = E(M j)z, then

1A — A"z 1 = 1O — )" [FdBEMN;, )

for all j and n. Since E(M Dx; = 0 (where M % is the complement of
M), ifo follows that

1A = A2 F = Ja [ O = N)" Fd(BEQ);, ) <67 il
for all j and =, and hence that z; € F(r;, ¢) for all 5. Since
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§i, 0 CTEAM, )

fmd sincfz T = E(M)x = Z,E(Mpz = Z;x;, it follows that x ¢ F(M, ¢).
The arbitrariness of £ implies that x ¢ F(3) and hence that

C(M) < §(M).

THEOREM 2. If M i3 a com
- pact subset of th , , .
D) © GUD. f the complex plane, then

Proof. L’et M " be the complement of M, and let N be any compact
subset of M”. If 4 is the distance between the two compact sets M and N,
then & > 0 and consequently we may find a number ¢ such that

0<e<s.

Ift Moe M and if z e §(ha, €), then || (4 — M) 2 || £ "
/ y €), = f
n; if on the other hand z « G(¥), then el el or every

T =22 = o |2 = M) [FAEN, 2) 2 6| 2|~

It follo_ws that no vector other than 0 can belong to both §(A\s, £) and
(E(N),.l.e. that §(\o, &)n G(N) = ©. We propose to show tha’t much
more i true; we shall, in fact, prove that §(ho, &) L G(N). Since
fr:'.(‘N) — A, lt follows from 41.1 that (A, &) is invariant under E(¥)
Emce a projection is a Hermitian operator, ‘we may conclude that.
;5.()\,, , €) reduces E(N), or, equivalently, that the projection F(A, ¢)
with range F(\y, &) commutes with E(N). We know therefore that ’the
product F (Mo, £) E(N) is the projection with range F(Ao, €) n G(N), and
llence thgt F(x , e)E(N) = 0. This, however, is what we prom’ised-
_u-(kc._, €) is indeed orthogonal to G(V). The arbitrariness of A, in 1[.
lmpl-les that §(M, &) L G(N) and hence that {(M) L G(N). To sx;m
up: 1f- N is a compact subset of 1/’, then F(3/) L G(N). The regularity
of E implies that §(3M) L G(AI') = (G(M))", and hence that

M) < G(M),

as asserted.

$43. The Spectral Theorem for Hermitian Operators

| It is high time to prove that in the course of the last several sections
we have not been operating in a vacuum. The following theorem settles
all such doubts for Hermitian operators.

ueorem 1. [f A is a Hermitian operator, then there exists a (neces-
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sartly real and necessarily unique) compact, complex spectral measure E,
called the speciral measure of A, such that A = INdEQ).
Proof. Let z and y be any two fixed vectors and write

L(p) = (p{4)z, y)
for every real polynomial p. It follows from 34.3 that
|Lp) | < Nu@)-llzll-lly ]l

and hence that, with respect to the norm Ny, Lis a bo.unded linear
functional of its argument. There exists consequently a unique complex
measure g in the compact set A(A) such that (p(A)z, y) = [ p(\) du(N)
for every real polynomial p and such that L) | £ iz ][y ]l for
every Borel set M. We shall find it convenient to indicate the dependence
of u on z and y by writing uu(z, ¥) instead of u(M). .

Using the uniqueness of u, we may proceed by stralghtlforward com-
putations to prove that uy is a symmetric, bilinear functlgnal for each
Borel set M. The proof of the fact that is additive in its first argu-
ment runs, for instance, as follows:

J'p()‘) dul(xl + T2, y) = (p(A)(xl + Ig), ?/) = (p(A)‘ll ’ y) + (p(A)IZ ’ y)
= [p(N) iz, ) + [ pON) diaze, v)-

Since, in virtue of the relation | px(z, y) | = ll= Hlly ||, valid for all
M, z, and y, the bilinear functionals uy are bounded, it follows that for
each M there exists a unique Hermitian operator E(M) such that
wa(m, y) = (E(ADzx, y) forallz and y. Consideration_of the polynomials
po and py , defined by ps(d) = 1 and pi(\) = X\, implies that
JAEMz, y) = (EX)z,y) = (1)
and
IAHENz, y) = (Az, y)

for all z and y. In view of 36.3, all that remains in order. to cc?mp.lete
the proof of the theorem is to establish that the function E'ns projection-
valued; we shall do this by proving that E is multiplicative. -
Tor any fixed pair of vectors x and ¥ and for any real polynomial g,
we introduce the auxiliary complex measure v defined for every Borel
set M by v(M) = [xg(\) d(EMN)z, ). If p is any real polynomial, then

[p)dv(n) = [ pMg®) dEN, y) = (p(4)e(Lx, y)
= (p(d)z, g(A)y) = § pN) d(EN)z, o(A)y)
and therefore
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¥(M) = [ ¢N)x,(\) dEMNz, y) = (E(M)=, ¢(A)y)
= (QUDE@M)x, y) = [ ¢\) d(EME(M )z, y)
for every Borel set M. Since ¢ is arbitrary, it follows that
(E(M aN)z,y) = [uand(EQ)z, )
= [wxxyO) dENz, y) = (E(NEM)z, y)

for every Borel set N, and hence that E(M nN) = E(M)E(N). The
proof of the spectral theorem for Hermitian operators is thereby com-
plete.

Although our proof of this theorem appears at a rather late stage of
the development of the theory, the proof does not, as a matter of fact,
use much of that theory. In addition to the very elements of Hilbert
space geometry, and the external analytic crutch of measure theory,
the proof relies on the connection between bilinear functionals and
operators and on the connection between the norm and the spectrum
of a Hermitian operator. We recall that the first of these connections is
based on the representation of linear functionals by vectors, and that
the second one (which is the one that really exploits the Hermitian
character of A) involves the elementary properties of the concepts of
spectrum and approximate point spectrum. Almost none of the in-
formation that we have accumulated about spectral measures was
needed, and only superficial (but apparently unavoidable) use was made
of the fact that 4 is Hermitian; we did not even need to know the
slightly tricky relation || A || = sup {| (Ax, z) |:|| 2 || = 1}. The proof
applies, of course, to the special case in which $ is finite-dimensional.
In view of the lot of apparently formidable machinery that we have
used, this last comment might appear silly—the spectral theorem for
the finite-dimensional case is, after all, quite near the surface. A closer
examination of the facts shows however that, since the measure-theoretic
apparatus becomes almost vacuous in the finite case, our procedure
yields a rather reasonable proof even there. The reader who is not quite
clear as to exactly which concepts are needed exactly where would do
well to retrace our steps and examine the extent to which they become
simplified in the presence of finite dimensionality.

§44. The Spectral Theorem for Normal Operators

Tueorem 1. If A is a normal operalor, then there exists a (necessarily
unique) compact, complez speciral neasure E, called the spectral measure
of A, such that A = [MEQ).
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Proof. If A, and A, are the real and imaginary parts of A respec-
tively, i.e. if 4; and A, are Hermitian operators such that '

A = A, + i4,,

then, by the theorem of the preceding section, there exist two real,
compact spectral measures F; and E; such that

Al = I)\dEl(X)
and
Az = [ NdE(N).

Tt will be convenient to regard the complex plane as the Cartesian
product of the real and the imaginary axes. In accordance with this
view, we shall use the term rectangle to stand for the Cartesian product
M, X M, of a Borel subset A, of the real axis and a Borel subset 3/,
of the imaginary axis. Since the fact that A is normal implies that all
operators in sight (and in particular E,(M,) and Ey(3f:)) commute
with each other, it follows that Ey(3y) Ex(M>) is a projection. The re-
mainder of our discussion will be devoted to sketching the proof of the
fact that there exists a (necessarily compact) complex spectral measure
F suchthat if M = M, X M,is arectangle, then E(M) = E\(M)) Ey(M,).
We leave it to the reader to verify that a spectral measure £ with this
property also has the property that [NdE(\) = A, + ¢A: = A; the
verification depends on the fact that if a function on a product space
is independent of one of its two possible arguments, then its integral can
be evaluated by an integration on the other one of the two factor spaces.

Tor any fixed vector z let i be the function of rectangles defined by
(M1 X Mg) = (Ex(M)) Ex(M3)z, 7). The properties of the spectral meas-
ures E, and E; imply that £ is non-negative, finitely additive, and con-
tinuous from below in the sense that its value on the union of an in-
creasing sequence of rectangles is the limit of its values on the terms
of the sequence. It follows that i can be extended to a measure on the
class of all Borel sets in the complex plane. It is convenient to indicate
the dependence of the extended fi on = by denoting its value on any
Borel set M by fiax(z).

For every Borel set M and for every pair of vectors z and y we write

#u(“’n '.U) = ﬁu(%(w + 'y)) - ﬁu(*}(’? - y)) + ’iﬁu(%(ﬂ’? + 'iy))
- iﬁu(%(w - ":y))-

We ussert that gy is, for cach fixed Borel set 3/, a symmetric bilinear
functional. This assertion is proved by noting that (i) it is true if A
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is a rectangle, and (ii) the class of all sets for which it is true is closed
under the formation of complements and countable unions. Since

[pu(z, 2) | = [ Aue) | < N2

whenever M is a rectangle, it follows thai, for each Borel set M, the
bilinear functional ux is bounded (and has, in fact, a norm not exceeding
1). We are almost at the end: by now we know that o every Borel set
M there corresponds a bounded Hermitian operator E(M) and that
the function F has all the required properties except possibly multi-
plicativity.

The last point is settled as follows. Fix z and y and, for each pair of
Borel sets Af and N, consider the two expressions (E(M n N)z, y) and
(E(MYE(N)x, ). If N is a rectangle, then the class of all sets M for
which these two expressions are equal is such that (cf. the preceding
paragraph) (i} it contains all rectangles and (ii) it is a Boolean ¢-algebra.
Consequently this class contains all Borel sets. The same argument
may now be applied to prove that, for each fixed Borel set 3, the class
of admissible N’s is also equal to the class of all Borel sets, and thus the
proof grinds to a stop.



CHAPTER III
THE ANALYSIS OF SPECTRAL MEASURES

§43. The Problem of Unitary Equivalence

Now where are we? The main purpose of the study of operator theory
is to discover, formulate, and prove the proper generalizations, valid
for all Hilbert spaces, of the powerful results known in the finite-dimen-
sional case. In so far as these results concern normal operators they are
all easy consequences of the possibility of reducing normal matrices to
diagonal form. The diagonalization theorem yields, in’ particular, the
ultimate desideratum, namely a complete description of the geometric
behaviour of all normal matrices. Speaking slightly more explicitly we
may say that the diagonalization theorem gives us a method which
enables us to construct all possible normal operators on a finite-dimen-
sional Hilbert space. The construction is based on such elementary and
completely manageable material as the concept of a finite set of complex
numbers. Although the general spectral theorem for normal operators
is frequently asserted to be the infinite-dimensional analog of diagonaliza-
tion, it is nowhere near as powerful as its purely algebraic special case.
The spectral theorem does not, for instance, tell us how to construct
all possible normal operators. All that the spectral theorem does ac-
complish in this direction is to reduce the problem to the construction
of all possible spectral measures, and thereby, probably, to leave the
prospective constructor more bewildered than he was at the begin-
ning.

These remarks are offered by way of introduction to the circle of
ideas usually called the problem of unitary equivalence. Two operators
A and B are equivalent if there is an automorphism U of the underlying
Hilbert space © which carries A onto B, or, in more detail, if there exists
a unitary operator U such that U'AU = B. The problem of unitary
equivalence is to find necessary and sufficient conditions on 4 and B
for the existence of such a U. Since equivalent operators are geometri-
cally indistinguishable, any “description” of an operator A will at the
same time be a description of all operators belonging to the same equiva-

4
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lence class as A. In other words: since, geometrically speaking, A is
only determined to within unitary equivalence, a more delicate deserip-
tion of A neither should nor does exist.

If‘ A is a normal operator with spectral measure I, the problem of
finding all operators equivalent to A is settled, in a certain repulsive
sense, by the equation U'AU = [Ad(U'E(\)U). (The symbol U in
this equation denotes, of course, a unitary operator; the interpretation
?md proof of the equation are achieved by the formation of the usual
inner products and should be obvious to the reader who has followed
the development of spectral theorv so far.) If, in other words, we say
that two spectral measures K and F, with the same domain, are equiva-
lent whenever there exists a unitary operator U such that

UTEQNU = F(M)

for all A{ in the common domain of definition of ¥ and F, then a neces-
sary and sufficient condition for the equivalence of two normal operators
is the equivalence of their respective spectral measures.

T_he main reason for feeling dissatisfied with the above answer to the
equlva'lence problem is that it leaves things pretty much where they
were: in order to decide whether or not two given operators are equiva-
lent we must still ask, separately for each unitary operator, whether or
not it is willing to perform the miracle required of it. What is really
wanted is a compleie set of invariants for the unitary equivalence of
normal operators. In qualitative terms this means that we wish to
associate with each normal operator A a certain “object’” u, so that
the following conditions are satisfied. (i) If A and B are equivalent
normal operators, then 4, = uz . (ii) If A and B are normal operators
such that u4 = us, then 4 and B are equivalent. (iit) To every object
u there corresponds at least one normal operator A such that u, = u.
(iv) The objects u are easily manageable mathematical concepts, which
may be described in simple and, as far as possible, constructive terms,
and whose definition is, preferably, independent of operator theory.
It is worth while to note in passing that the spectrum A(A) of a (not
even necessarily normal) operator A satisfies-conditions (i), (iii), and
(iv). We may therefore say that the points of A(A4) constitute a set of
unitary invariants of 4, but not a complete set of such invariants.

The first three of the above conditions describe nothing more than a
one-to-one mapping from the set of all equivalence classes of normal
operators onto the set of all objects. The reader who reads on to finish
this book will, at the end, be in a position to judge whether or not our
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solution satisfies the last condition. In order to motivate both the result
we shall obtain and the method we shall use to get it, we begin, in the
next section, by taking a closer look at the situation in finite-dimensional
spaces.

§46. Multiplicity Functions in Finite-dimensional Spaces

The set of all proper values of a normal operator A on a finite-dimen-
sional Hilbert space ©, together with their associated multiplicities,
form a complete set of unitary invariants of A. These invariants may
be described as follows. To the normal operator A there corresponds a
function % = 14 ; the domain of « is the complex plane and the values
of u are finite cardinal numbers. (The value u(\) of the function u at
the complex number \ is to be interpreted as the multiplicity with
which N occurs as a proper value of A; if X is not a proper value of 4
at all, we write u(a) =-0.) Not cvery function with the indicated do-
main and range arises in this manner from some normal operator A.
In order that a function u do come from some A it is, in fact, necessary
and sufficient that the sum of all the values of u be the dimension of
the Hilbert space © (and hence, in particular, it is necessary that u
vanish at all but a finite number of points). Anyone familiar with the
diagonalization theory of normal matrices can verify at a glance that
the funection 1, satisfies all the conditions stated and discussed in the
preceding section.

To prepare the way for understanding the generalized version of
multiplicity functions such as u., we proceed to describe them in
different terms. Since infinite-dimensional spectral measures associate
projections with Borel sets of complex numbers, and not with individual
complex numbers, it ought not to be surprising that we get a nearer
approximation to the final version of multiplicity theory if we regard
the domain of a multiplicity function as the class of all Borel sets in
the complex plane, and not as the complex plane itself. The transition
in point of view is easy: for any non-empty Borel set M we define u4(M)
to be the minimum value of u.(A) for all A in M; for M = 0 we write
uA'(M ) = 0 :

Not every function u whose domain is the class of all Borel sets in
the complex plane and whose values are finite cardinal numbers is the
multiplicity function of some normal operator 4 on a finite-dimensional
Hilbert space. It is easy to verify that if u does come from some A,
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then
u(M) 2 u(N)
whenever M and N are Borel sets such that 0 = M C N, and
w(U, M,) = min,{u(dM,)}

whenever {}M,} is a disjoint sequence of Borel sets. Even these condi-
tions are only necessary; they are not vet sufficient to ensure the exist-
ence of an A such that @& = w, . It is easily possible to adjoin to these
conditions a finiteness requirement such that together with it they
become necessary and sufficient. Since, however, the conditions already
stated are the only ones that persist in the general (not necessarily
finite-dimensional) case, we shall not bother to formulate the extra one
that applies only provincially.

Unfortunately we are still far from the definition of the kind of multi-
plicity function that really arises in infinite-dimensional cases. The
difficulty is that the concept of a set (Borel set or not) is not quite the
relevant one. "The argument of our general multiplicity function will
not be a set but a finite measure. Speaking very roughly a finite measure
% in the complex plane may be considered as a set. What we have in
mind is “the set on which u is concentrated” or ‘“the complement of
the largest set on which x vanishes.” Such phrases are nonsense of
course. It is, however, true that a measure p for which there exists a
finite set on whose vomplement n vanishes is in an obvious sense a
generalization of a finite set. Enough of the sense in which this is true
carries over to the infinite case that a successful theory ean be built on
it. We must, however, postpone further discussion of these matters
until after the presentation of the pertinent properties of measures.

§47. Measures

Let (X, S) be a measurable space; the only measures that we shall
consider from now on are finite measures whose domain of definition is
S. We recall that a measure » is absolutely continuous with respect to a
measure g, in symbols » < g, if »(M) = 0 for every set M such that
p(M) = 0. We shall have occasion to use the Radon-Nikodym theorem;
it asserts that if 4 and v are measures such that » < g, then there exists
a non-negative function f in 2,(x) such that »(M) = fufdu for every set
M in S. A measure p is equivaleni to a measure », in symbols p = »,
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if 4 < » and » < p; it is obvious that the terminology is justified, or,
in other words, that the relation = is an equivalence.

If x is & measure and M e S, we shall write uy for the measure defined
for every N in S by ua(N) = u(d n N).

TureoreM 1. If u is @ measure and if M and N are in S, then a neces-
sary and sufficient condition that psy <K px ts that y(M — N) = 0.

Proof. If (M — N) = Oand if Myisa set in S such that ux(Mo) = 0,
then

pu(Mo) = u(M n M) = p((M nN)nMo) + u((M — N)n M) = 0.

If, conversely, pa < px, then, since we have py(M — N) = 0, it fol-
lows that p(M — N) = ux(M — N) = 0.

THEOREM 2. If 1 and v are measures such that v < p, then there exists
a set N in S such that v = px . :

Proof. By the Radon-Nikodym theorem there exists a non-negative
function f in {{u) such that »(Af) = [ f(t) du(t) whenever M ¢S.
If N = {t:f(t) > 0}, then [u_n fdu = 0 and therefore

(M) = Iynyfdy

whenever M ¢ S. It follows that »(3) = 0if and only if (N n M} = 0,
ie. that r = un.

The objects of principal interest for us will be not measures but
equivalence classes of measures. In order, however, to minimize complica-
tions, we shall adopt a point of view similar to that frequently adopted
in number theory. (It is easier to discuss integers and congruence than
to discuss equivalence classes of integers and equality.) We shall ac-
cordingly formulate definitions and announce theorems about measures,
intending all the while that our statements should be interpreted so as
to apply to equivalence classes of measures. An alternative point of
view is to think of a measure as the class of all sets on which it vanishes.
The intuitively most helpful attitude is to think of a measure as being
the same as “the” set on which it is concentrated; ef. Theorems 1 and
2 and the remarks at the end of the preceding section. In order to
minimize the possibility of eonfusion we shall, however, continue to
distinguish by our notation between equality in fact (x = ») and equality
by convention (u = »).

A typical statement which must be interpreted in terms of equivalence
is that with respect to ordering by absolute continuity the set of all
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measures is a partially ordered set. In technical language (which we shall
in fact not employ) our result will be that the partially ordered set of
all measures is a Boolean &-ring with the property that every principal
ideal satisfies the countable chain condition.

§48. Boolean Operations on Measures

We continue to use the notations and conventions of the preceding
section and, in particular, the use of the word “measure” to mean
“finite measure.” If g, and u, are measures, then there exists a measure
g such that y; < g, g2 & y, and such that u << v whenever the measure
v is such that y; < v and g < ». In other words, the supremum

p=m Vo

of any two elements u; and g, of the partially ordered set of all measures
is another element of that set; the proof of this assertion is achieved
simply by writing g4 = p + p2. With a very small modification the
same technique may be used to show the existence of the supremum
V;a; of any countable family of measures. There is, indeed, no loss of
generality in assuming that Z;u,{X) < «-—if this were not already
true, we could make it true by, for instance, replacing u; by a suitable,
small positive multiple of u; . (The replacement yields a measure equiva-
lent to g;.) It follows that the set function u defined for each A in S
by u{M) = Z;u;(M) is a measure; it is clear that p = V,u;. In view
of Theorem 1 below, it is not even necessary to verify the last assertion;
all that is needed from our discussion is the fact that every countable
family {u;} of measures is bounded. (To say that a family {u;} of meas-
ures is bounded means that there exists a measure p such that u; K u
for all values of j.)

Tueorem 1.  Every bounded family {u;} of measures has a supremum
and, in fact, {u;) has a countable subfamily {us.) such that V;u; = Vop, .

Proof. Let u be a measure such that u; < p for every j, and, for
each 7, let N; be a set in S such that y; = py, . Form all finite unions of
the Nj’s, evaluate i on each such union, and let a be the supremum of
the numbeérs so obtained. If {M.} is a sequence of such finite unions
with the property that u(M,) — «,and it M = U, M, then uy = V u;.
Indeed if p(N; — M) > 0 for some j, then u(V;u M.) > « for some
n and, since this contradicts the definition of ¢, we have u; K py . If,
on the other hand, » is a measure such that u; < » for every j, then



80 III. THE ANALYBIS OF SPECTRAL MEASURES

ux; K v for every j. It follows that ua, < » for every n and hence that
pa KL v :

It follows from Theorem 1 that every non-empty family {u;} of
measures has an infimum, Aju;; the infimum is obtained by forming
the supremum of the family of all measures bounded by every ;.
Consequently the partially ordered set of all measures is not only a
lattice, but even a o-lattice, and a boundedly complete lattice. An
application of 47.2, similar to the one made in the proof of Theorem 1,
shows that this lattice is distributive. The main point of 47.2 is ex-
actly its applicability to such situations; by means of it most of the
algebraic facts concerning measures may be reduced to the correspond-
ing algebraic facts concerning sets.

It is convenient to say that two measures u and » are orthogonal, in
symbols p L v, if u A v = 0; a family {u;} of measures is an orthogonal
family if p; 1 p whenever j # k. Another example of the sort of appli-
cation of 47.2 that was mentioned in the preceding paragraph occurs
in the proof of the assertion that a bounded orthogonal family of non-
zero measures is necessarily countable.

Our next and last result about the algebra of measures asserts that
the set of all measures is not only a distributive lattice but is in fact
quite anxious to look and act like a Boolean algebra. There is in general
no ‘“‘unit” measure, i.e. the set of all measures is not in general bounded,
and it is therefore not only false but even meaningless to say that every
measure has a complement. It does, however, make sense to speak of
relative complements, or differences, and that is what Theorem 2 does.

THEOREM 2. If u and v are measures, then there exisls a measwre un
such that uy 1L v and po vy = u v ».

Proof. If v & p, then v = py for some ¥ in S, and px_y does every-
thing expected of . In the general case (i.e. when » is not necessarily
bounded by u) this special result may be applied to ¢ v » and » in place
of u and » respectively.

§49. Multiplicity Functions

We are now in a position to describe the objects which will oceur as
complete sets of unitary invariants for spectral measures. A multiplicity
Junction is a function « whose values are (not necessarily finite) cardinal
numbers, whose domain is the set of all finite measures in 1 measwrable
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space (X, S), and which satisfies the following three conditions: @) if
u is the measure which is identically zero, then u(x) = 0; (ii) if g and
v are measures such that 0 # » « g, then u(u) = u(v); and Gii) if a
measure u is the supremum of a countable orthogonal family {z;} of non-
zero measures, then w(p) = min {u{u;)}. We observe that since a bounded
orthogonal family of non-zero finite measures is necessarily countable,
the third condition is only vacuously strengthened by removing from
it the word “countable.”

It is not hard to give examples of multiplicity functions. Given the
measurable space (X, S), let {u;} be an arbitrary orthogonal family of
finite, non-zero measures on S and, for each j, let u; be a cardinal num-
ber. If a non-zero measure u is covered by the family {4} in the sense
that u = V;(u A u;), we define u(n) to be the smallest one of those
cardinal numbers u; for which u A u; # 0; for all other measures u we
define u(z) to be 0. We leave to the reader the verification that the u so
defined is indeed a multiplicity function, and we turn to the more im-
portant task of proving that every multiplicity function may be ob-
tained in this manner.

To motivate our procedure we take one more look at the example of
the preceding paragraph. If j and & are indices such that wu; < w,
then w(u; v ) = n(y;) = w;. It is veally possible, in other words,
that the second condition in the definition of multiplicity functions is
not vacuously satisfied, i.e. that u and » are measures such that 0 = » << g
and u(x) < u(v). It is natural to say that if for a given measure u this
never happens, if, that is, u(u) = u(r) whenever 0 = » <« 4, then u
has uniform multiplicity. In the example of the preceding paragraph
this concept is illustrated by each term of the defining family; it is true,
in other words, that u; has uniform multiplicity (equal to u,) for each
value of 7,

Taeorem 1. If w is a multiplicity function and if u is a non-zero

finite measure on S, then there exists a non-zero measure o such that py <€ u

and such that po has uniform multiplicity.

Proof. Write 5 = V {riv < g, ulv) > u(n)}, and (48.2) let uy be a
measure such that e L 7and w v 5 = g. Since (48.1) # may also be
expressed as the supremum of a countable family of measures » for
which u(#) > u(u), and since a standard use of 48.2 shows that this
countable family may be assumed to be orthogonal, it follows that
1(#) > ulu). Since p = p v 7, it follows that u # 0 and hence that
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u(io) = u{u). To prove that g has uniform multiplicity, suppose that
0 = v & po. Since the assumption u(y) > u(mw) = ulp) leads to the
contradiction » <« %, the proof is complete.

TueoRreM 2. If u is a multiplicity funcfion and +f p is a non-zero
finite measure on S, then there exists a (necessarily counlable) orthogonal
family {u;} of non-zero measures such that each p; has uniform mulliplic-
ity and such that u = Vju; . '

Proof. In virtue of Theorem 1 there do exist orthogonal families of
non-zero measures each term of which is bounded by p and has uniform
multiplicity; let {u;} be a maximal family with these properties. If
V;u; = v and if » # g, then, by 48.2, there exists a non-zcro measure
bounded by p and orthogonal to ». An application of Theorem 1 to that
measure shows that its existence contradicts the maximality of the
family {;} and it follows that V;u; = n.

Tusorem 3. If u is a multiplicity function, then there cxists an orthogo-
nal family {u;} of non-zera finitc measures on S such that cach u; has unt-
form multiplicity and such that p = V;(u A p;) whenever p is a finile
measure on S.

Proof. Select a maximal orthogonal family of non-zero finite measures
on S and apply Theorem 2 to each term of that family. We may collect
the resulting family of families into one family {u;} which will then be
a maximal orthogonal family of non-zero measures and which will, in
addition, have the property that each p; has uniform multiplicity. It
remains merely to prove that if {u;} is a maximal orthogonal family of
non-zero finite measures on S, then u = V;(u A p) for every finite
measure g on S. The argument for this purpose proceeds just as in the
proof of Theorem 2. If, for a given g, V(A g;) = v, and if o # v,
then, by 48.2, there exists a measure g such that 0 5 uo K u and po L »
Since it follows that peAp; = mA{(uAp) KmwAv =0, ie that
o L u; for all 7, this contradicts the maximality of the family {u;} and
proves therefore the relation u = V;(u A p i)

It is clear that Theorem 3 implies what we promised to show, i.e.
that every muitiplicity function may be obtained in the way in which
we obtained our first example. We cannot, of course, assert that the fam-
ily {z;} described in Theorem 3 is uniquely determined by the multiplic-
ity function w; several applications of Zorn’s lemma have cut us oft
from being able to claim any naturality for the objects whose existence
we proved.
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§50. The Canonical Example of a Spectral Measure

Suppose that (X, S) is a measurable space, {;} is an orthogonal fam-
ily of non-zero finite measures on S, and, for each value of j, u; is 2
cardinal number. For each value of j we consider the Hilbert space ob-
tained by forming the direct sum of u; copies of 2:(;) and we (tem-
porarily) denote by $ the direct sum (over the index j) of the Hilbert
spaces so obtained. A typical element of  is a doubly indexed family
{fi} of functions on X such that f; e 2(u;) for each j and k; for a fixed
value of 7 the index k has u; possible values. By the canonical speciral
measure associated with the families {u;} and {u,} we mean the spectral
measure E defined for each M in S by E(M){fi} = {xufal}.

One of our results will be that upon the application of a suitable
isomorphism every spectral measure may be put into this canonical
form. Applying that result to compact, complex spectral measures we
conclude that every normal operator is isomorphic to a direct sum of
multiplications by bounded measurable functions on finite measure
spaces, or, equivalently, that it is isomorphic to a multiplication by a
hounded measurable function on a direct sum of finite measure spaces.
(We have not given and we need not and will not give the detailed
definition of the latter concept.) Another way of expressing this result
is to say that a suitable (in general highly infinite) measure x may be
introduced into the spectrum of any normal operator A so that A be-
comes isomorphic to the multiplication operator which sends each
funetion f in f(u) on the function g defined by g(\) = Af(A). Since all
these statements will be immediate consequences of our study of spectral
measures, we shall devote our attention to spectral measures exclusively.

In terms of spectral measures it is easy to describe our intentions.
We shall associate a multiplicity function w with every spectral measure
E in such a way that if {x;} is any orthogonal family with the properties
described in 49.3, then F is isomorphic to the canonical spectral measure
associated with {u;} and {u(u;)}. (Observe that this implies in particular
that, despite the non-uniqueness of {u;}, the canonical spectral measure
is determined by  uniquely to within unitary equivalence.) It will fol-
low that two spectral measures are equivalent if and only if they have
the same multiplicity function, and consequently the proof of this
result will indeed fulfill all our promises.

Let us now return to the canonical example described above. If f
is any one of the doubly indexed family of Hilbert spaces used to Torm
$, then & may be viewed as a subspace of $. Since the subspace R is
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invariant under E(3), for every set M in S, the projection P with
range & commutes with the spectral measure E. (If E is the spectral
measure of a normal operator A, the last assertion may be reformulated
by saying either that the subspace £ reduces A or that the projection
P commutes with A.) These comments indicate that the projections P
which commute with a spectral measure E are the building blocks out
of which E is constructed and that the analysis of spectral measures
ought, therefore, to analyze all such projections. In the next two sections
we indicate the details of such an analysis in the finite-dimensional case;
after that we shall finally be ready to enter with understanding into the
technical details of the general case.

§51. Finite-dimensional Spectral Measures

Let E be the spectral measure of a normal operator A on a finite-
dimensional Hilbert space $. Let {A;} be the family of all distinct proper
values of A; for each j, let E; be the value of E on the sef containing
A; alone, and let u; be the dimension of the range of E; (i.e. the multi-
plicity of the proper value A;). It is in many respects helpful to consider
a structure analogous to the one formed by the N’s, E’s, and u’s. The
analogs of the M’s are to be points spaced at, say, unit distances apart
on a horizontal line segment. The role of E; is to be played by a finite
set, corresponding to the base point A; and thought of as arranged in a
vertical column standing over A, ; it will be convenient to space the
points of such a column so that each of them is at a unit distance from
its nearest neighbors. The fact, finally, that u; is the dimension number
corresponding to E; is to be indicated by letting the set corresponding
to E; have cardinal number u;. The entire set-theoretic configuration
thereby described is exemplified by the diagram below. If P is a pro-
jection which commutes with E, then the range of P is a subspace which

__.
-

-
-
-
—fe
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reduces A. The operator A4 when restricted to the range of P has its
proper values among the A/s and is such that the proper space cor-
responding to each \; is a subspace of the range of E; . The set-theoretic
analog of a projection such as P is, therefore, a set obtained by select-
ing a (not necessarily proper and not necessarily non-empty) subset
from each column and forming the union of the sclected sets ; in other
words the analog of P is an arbitrary subset of the union of all columns.
A distinguished role is played by the subsets which consist of entire
columns; they are the analogs of the values of the spectral measure.

In accordance with our indications in and since §46, we shall think
of multiplicity as defined not for proper values only but also for sets
of proper values, or, equivalently, for arbitrary values of the spectral
measure. If, for instance, the spectral measure E is such that its asso-
ciated column configuration is exactly the one indicated by our diagram,
then the multiplicity of the value of E on the entire complex plane is
1, and the multiplicity of Z{{\7, s, Mo, Apo}) is 2.

Once the diagram corresponding to a spectral measure has been con-
structed, it is trivial to read off from it the answer to every multiplicity
question. The multiplicity associated with any set of A’s is the largest
number of rows each of which cuts across the entire set under considera-
tion. If the spectral measure is such that every column is of height 1
(if, in other words, every proper value is simple), then the answer to
every multiplicity question is 1 or 0. Since the answer to the most general
multiplicity question can be formulated in terms of rows, in terms, that
is, of what may well be called simple spectral measures, it behooves us
to try to understand the concept of simplicity and the manner in which
a general spectral measure is made up of simple pieces.

§52. Simple Finite-dimensional Spectral Mecasures

The finite-dimensional case and the general case described in §50
make contact with each other through the following comment. Sup-
pose that the finite-dimensional spectral measure E discussed in the
preceding section is simple, i.e. that each u; is equal to 1. Consider in
this case the measurable space X whose points are the proper values
of the operator A and all of whose subsets are measurable ; let ¢ be the
measure in X whose value on any subset of X is the number of points
in that subset. It is easy to verify that, under these circumstances, the
canonical spectral measure associated with ¢ (i.e. the one whose value
on a set 1 is multiplication by the characteristic function of II) is
isomorphic to E. In other words: the building blocks which served to
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construct our general canonical examples are natural generalizations of
the simple pieces that occur in all finite-dimensional spectral measures.

The simple pieces may also be characterized intrinsically, without the
use of an auxiliary measure space. Every vector x in our finite-dimen-
sional Hilbert space $ may be written as & sum, z = Z;z;, where, for
each j, z; belongs to the range of E; . If we apply all possible values of
E to z and then form the projection on the subspace spanned by the
vectors so obtained, we end up with a projection P such that E « P.
(A projection such as P is called cyclic. The terminology is suggested by
that of eyclic groups and the circumstance that the range of P is spanned
by the set of all vectors of the form A"z, n = 1,2, --- . The reader is
advised to supply the proof of this last assertion.) If E is simple, we
can exhibit 1 as a cyclic projection by making sure that x has a non-
zero component in the range of each E; ; it is true, conversely, that if
E is not simple, then 1 is not cyclic.

. Although both the characterizations of simplicity described in the
two preceding paragraphs have their uses in the infinite-dimensional
case, the most revealing and applicable characterization is the one that
follows. With each projection P that commutes with E, i.e. with each
subspace that reduces 4, we associate the least value of the spectral
measure E which contains P. This construction has a perfect analog in
our column diagram: with each set therein we associate the union of
all the columns that have a non-empty intersection with the set. The
rows, the objects which enable us to count multiplicities quickly, have
an interesting relation to the associated column set. A necessary and
sufficient condition that a set be a row (in the sense that it contain not
more than one point from each column) is that every one of its subsets
may be obtained as the intersection of the given set with a suitable set
of columns. Equivalently: a necessary and sufficient condition that
the entire diagram consist of but one row is that every one of its sub-
sets be a column. The geometric fact suggested by this characterization
is true. A necessary and sufficient condition that a finite-dimensional
spectral measure be simple is that every projection P which commutes
with it be one of its values. Another way of formulating the same result
is this: a necessary and sufficient condition that a finite-dimensional
spectral measure be simple is that its values form a maximal abelian
set, of projections.

If the reader will keep in mind the comments in this section and the
preceding one, and if he will systematically compare each definition,
each theorem, and each proof with the corresponding concept, asser-
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tion, and construction associated with our column diagram, he should
have no difficulty in following the remaining technical details. Some
of the distinctions that we shall be forced to recognize do not, to be
sure, show up in our diagram. If, however, the diagram is generalized
so as to admit infinitely many (and possibly even uncountably many)
rows and columns, then it becomes an almost perfect schematization of
our work. If the countable subsets of the base space, together with their
complements, are the ones that are declared measurable, then even the
phenomena of non-measurability can be exemplified by generalized
column diagrams.

$53. The Commutator of a Set of Projections

From now on we shall again reserve the symbol § for an arbitrary but
fixed Hilbert space and the word “projection” will refer to projections
whose domain is H.

We recall that the symbol < denotes commutativity. We now extend
its domain of applicability by writing P <> Q whenever P is an operator,
Q is a set of operators, and P «» Q for all @ in Q. Since we are particu-
larly intcrested in projections, we introduce the notation A for the
set of all projections, and, if P is any subset of 4, the notation P’ for the
set of all those elements P of A for which P «» P. The purpose of this
section is to study the elementary properties of sets such as P'.

TaeoreyM 1. If P C A, then P C P,

Tueoren 2. If P C Q C A, then Q' CP.

TurEoREM 3. If P C A, then P’ = P,

Proof. Substituting P’ for Q in Theorem 2, we obtain P CPLI,
on the other hand, we apply Theorem 1 to P’ in place of P, we obtain
the reverse inequality P/ < P,

TrEOREM 4. A set P of projections is commutative (i.e. P CP’) of
and only if P is commutative (i.e. P CP').

Proof. If P C P, then an application of Theorem 2 shows that
P’ C P. If, on the other hand, P C P = P, then, by Theorem 1,
PCP. '

TueoreM 5. If P C A, then 0 ¢ P/, 1 e P, and if {P;} s a family
of projections in P!, then V; P; e P’ and A;Pje P

Proof. If P and Q are projections, then P « Q is equivalent to the
assertion that the range of Q is invariant under P. The conclusion fol-
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lows from the fact that the span and the intersection of any family of
subspaces invariant under P are themselves invariant under P.

In view of Theorem 5, the commutator P’ of any set P of projections
is a complete sublattice of the lattice A of all projections. Since P’ con-
tains 1 — P along with P, the lattice P’ even possesses a natural com-
plementation operation. It follows that if P’ happens also to be com-
mutative, so that the lattice-theoretic distributive laws are valid in
P (cf. 30.3), then P’ is a complcte Boolean algebra.

§54. Pairs of Commutators

Throughout the remainder of this book (X, S) will be a fixed meas-
urable space and E a fixed spectral measure on S. We shall denote the
range of E (i.e. the set of all projections of the form E(3!) for some M
in 8) by E; weshall write P = E’, and F = P’ Since E is commutative,
it follows (53.4) that F = E” is also commutative and hence that F
is a complete Boolean algebra. The essential relations among E, F,
and P are the inequalities E C F C P and the equations E” = P’ = F
and F/ = P.

The consideration of F is not one of the things that our heuristic
considerations prepared us for; in the finite-dimensional cases F turns
out to be the same as E. In the general case F may be viewed as a kind
of completion of E. The set E need not be a complete Boolean algebra——
F is. The projections which commute with all the elements of P = E'
need not belong to E—they do belong to F. Since our development will
yield an almost complete insight into the structure of the projections
in F, we can only gain information, and not lose any, by incorporating
F into our study.

In all our constructions the space X will play a relatively minor,
auxiliary role; what is important is the pair of sets F and P. We propose,
in other words, to present a structure theory for pairs F and P, where
F and P are sets of projections, F is commutative, F’ = P and P’ = F.
Since, however, our proofs will make use of X, E, and E, the material
out of which our particular F and P were manufactured, it might seem
that our promises are greater than our deeds. For the sake of the reader
who is interested in the additional generality we record here our assur-
ance that we are not really sacrificing any of it. The point is that the
standard theory of representations of Boolean algebras implies that if
F is any complete Boolean algehra of projections (i, a complete Boolean
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" subalgebra of A), then there exists a measurable space (X, S) and a

spectral measure E on S such that the range of E is exactly F.

In view of the last assertion, the presence in our theory of X, E, and
E might actually be said to be a gain in generality rather than a loss,
since the apparently more general theory involving F and P alone is
always associated with an X and an E such that E = F. Although the
shallowness of this comment is probably obvious, it does help to clarify
matters slightly. The various levels of the constructs we will employ
are clearer if they are kept separate and if, therefore, it is not assumed
that E = F.

The reader who is not interested in, or did not understand, the pre-
ceding two paragraphs, is advised to forget them. Our previews of com-
ing attractions are hereby over, and we are now going to settle down to
an uninterrupted showing of the main feature; the east of characters is,
as announced at the beginning of this section, X, E, E, F, and P.

§55. Columns

1f P ¢ P, the column generated by P, in symbols C(P), is the small-
est element of F which contains P: C(P) = A{F:P £ F ¢ F}.

The beginning of the theory of columns is quite easy. It is clear, for
instance, that P < C(P) for every P in P and that C'(P) vanishes if
and only if P vanishes. It is also clear that the formation of columns is
a monotone operation (i.e. that if P and @ are in P and P £ Q, then
C(P) £ C(Q)), and that the column generated by a projection in F
is itself (i.e. that if F ¢ F, then C(F) = F). On a slightly higher level
we encounter the additive and multiplicative properties of the function C.

TuroreM 1. If {P;} is a family of projections in P and if
P = V;P;,
then

C(P) = V;C(P;).

Proof. Since P; £ P £ C(P), it follows that C(P;) £ C>(P) for all
7 and hence V;C(P;) = C(P). Since, on the other hand, P; £ C(P;)
for all j, we have also P = V; P; £ V; C(P;) and consequently

C(P) = V;C(P)).
{Recall that V; C(P;) ¢ F.)
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There is no intuitive geometric reason for expecting C to be multi-
plicative as well as additive, and indeed it is not; the following result
exhibits the one little shred of multiplicative behaviour that € does
possess. ’

THEOREM 2. If PePand F ¢ F, then C(FP) = FC(P).

Proof. Since FP < F and FP < P, it follows that

CFP) S CF) =T
and
. C(FP) £ C(P),
and consequently that C(FP} £ FC(P). Since, on the other hand,
P=(01-~FP+FP=(1—-F)+ FP,
it follows that ‘
C(P) = (1 -F) + CFP),
and hence that
FC(P) £ FC(FP) = C(FP).
Because of its later applicability we record here for reference an im-
mediate corollary of Theorem 2. ‘
TurorEM 3. If PeP,FeF,and 0 2 F £ C(P), then FP # 0.
Proof. C(FP) = FC(P) = F.

§56. Rows

A rowisa projection B in Psuch that if R = P ¢ P, then P = C(P)R.
We note that if P and R are projections in P such that P < R, then,
since P £ C(P), the inequality P < C(P)R is always valid. The state-
ment that R is a row means that the inequality reduces to an equality
for all admissible P.

TreorREM 1. If Risarowand if R = SeP, then S is a row.

Proof. If S 2 PeP, then R 2 P and therefore P = C(P)R; it
follows that P = PS = C(P)R-8S = C(P)S. '

Treorem 2. If R isa'row and if P and @ are projections in P such
that P < R and Q < R, then P < Q and C(PQ) = C(P)CQ). If

C(P) 2 C(@),
then
P =Q.
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Proof. Bince P = C(P)R and @ = C(Q)R, the commutativity of
P and Q and the last assertion of the theorem are obvious. To prove
that under these special circumstances € is multiplicative, we note that
since C(P) = C(R) and C(Q) = C(R), it follows that

C(P)C@)C(R) = C(P)C@Q).

The desired conelusion follows from an application of 55.2 to the rela-
tion PQ = C(P)C(Q)R.

Everything we are going to do from here on in will aim at showing
how rows are always put together to form columns. At the present
stage, however, our discussion is somewhat hampered by the fact that
we have no particular reason to believe that such things as rows even
exist. We find it necessary, therefore, to begin a somewhat lengthy
detour whose purpose is to dig out the rows that we need from the
Hilbert space and the spectral measure that are at the basis of our theory.

§57. Cycles

For any vector z in §, the cyclic projection or more concisely the
cycle generated by z, in symbols Z(z), is the projection on the subspace
of © spanned by the set of all vectors of the form E(M)z, M € S. Our
first duty is to show that the concept of cycle is not entirely foreign to
the subject we are studying.

TeEOREM 1. If 2 ¢ ©, then Z(x) € P.

Proof. If M and N arein S, then E(M)E(N)zx = E(M n N)z, so
that the range of Z(z) is invariant under E(M). It follows that the
range of Z(x) reduces E(M), and hence that E(M)— Z(x). Since M is
arbitrary, this means that Z(z) ¢ E' = P.

We can now proceed with good conscience to derive the properties
of cycles and their relations to rows and columns.

TaeorREM 2. If PP,z ¢ D, and P £ Z(z), then P = Z(Px).

Proof. The range of Z(Px) is, by definition, the span of the set of
all vectors of the form E(M)Px = PE(M)x, M ¢ S. It follows that the
range of Z(Pz) is the image under P of the span of the set of all vectors
of the form E(M)z, M € S, and hence that Z(Pz) = PZ(z) = P.

THEOREM 3. IfF ¢Fand x ¢ D, then FZ(z) = Z(Fx).

Proof. Ii P = FZ(z), then, by Theorem 2,

FZ@) = P = Z(Pz) = 3(FZ(z)z) = Z(Fxz).
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TueoreMm 4. If PeP and x ¢ , ,then Px = 0 and Pz = © are
equivalent to Z(x) L P and Z(z) < P respectively.

Proof. If M ¢8 and Py = 0, then PE(M)x = E(M)Pz = 0. It
follows that I’y = 0 whenever y belongs to the range of Z(z) and hence
that PZ(x) = 0. Applying this result to 1 — P in place of P, we see
that Z(x) = P whenever z belongs to the range of P. These remarks
prove a half of both the asserted equivalences; the remaining halves
are trivial.

It is time to observe that if x = 0, then Z(z) = 0, and that the more
significant converse of this implication is also valid. (Recall that the
range of Z(x) contains E(X)x = x.) If we introduce the convenient
abbreviation C(x) for C(Z(z)), then we can announce a similar state-
about C(r): a necessary and sufficient condition that C(x) = 0 is that
z = 0. This last assertion has a slight generalization which we shall
find useful.

THEOREM 5. IfFe¢F,xe D, and 0 = F < C(2), then Fz = 0.

Proof. 1f Fx = 0, then, by Theorem 4, FZ(z) = 0 and therefore
F=F.C@)=CI-Z) = 0.

§58. Separable Projections

A projection F in F is separable if every orthogonal family {F;} of
non-zero projections in F, such that F; < F for all 7, is necessarily count-
able. The main purpose of this section is to show that the columns
C(z), introduced at the end of the preceding section, are intrinsically
characterized by the property of separability. We observe that if F and
G are projections in F such that # £ G and G is separable, then F is
separable.

TueorREM 1. If {F;} 15 a countable orthogonal family of separable
projections in F, and if F = V,;F;, then F is separable.

Proof. If {G.}] is an orthogonal family of non-zero projections in F
such that G, < F for all k, then {F;G.]} is, for each value of 7, an or-
thogonal family of projections in F such that F; G, < F; for all k. It
follows that, for each j, F;G. = 0 except for a countable set of values
of k. Since Gx = FG, = V;F;G, for all k, it follows that {G,} is count-

able.
THEOREM 2. If z ¢ D, then C(x) is separable.
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Proof. If {F;} is an orthogonal family of non-zero projections in F
such that F; = C(z) for all j, then Z;F; < C(z) and consequently
Z; || Fsz | < || ||’ The countability of {F;} follows from 57.5.

TuEOREM 3. If P and Q arc in P, if P £ C(Q), and if C(Q) s scp-
arable, then there exists a veclor x in the range of P such that C(P) = C(x).
Hence, in particular, if V ¢ F and F is separable, then I' = C(x) for
some veclor x.

Proof. Let {z;} be a maximal family of non-zero vectors in the
range of P such that C(z;)C(2x) = 0 wheneverj = k. Since C(z;) £ C(Q)
for all j, and since C(Q) is separable, the family {z;]} is countable and
there is therefore no loss of generality in assuming that Z; || z; ||* < <.
If we write z = Z;x;, then z is in the range of P; we shall complete
the proof by showing that C(P) = C(x). If C(P) — C(z) # 0, then,
by 55.3, the range of (C(P) — C(2))P contains a non-zero vector y.
It foliows that y belongs to the range of P and hence to the range of
C(P). Since y also belongs to the range of C(P) — C(x), it follows that
C(z)y = 0. Using 57.4, we see that C{z) Z(y) = 0 and hence, by 55.2,
that C(x) C(y) = 0. If we knew that C(z;) < C(x) for all j, then we
could conclude that the existence of y contradicts the maximality of
the family {xz;}, and the proof would be complete. It is therefore suffi-
cient to prove that Z{z;) = Z(z) for all j.

Since C(z;)xy = §xi, it follows that C(z;)x = x; and hence (since
C(z;) € F) that Z(z)z; = Z(x)C(x))z = Clz)Z(x)xr = C(z))xr = z; for
all j. Consequently Z{z) E(M)x; = E(M)Z(x)x; = E(M)z; whenever
M € 8, and therefore Z(z)Z(x;) = Z(z;) or Z(z;) £ Z(x) for all j.

§59. Characterizations of Rows

Since on several occasions we shall run into pairs of projections P
and @ in P such that C(P)C(Q) = 0, it is convenient to introduce a
technical term for the phenomenon; under these circumstances we shall
say that P and @ are very orthogonal.

TreEorREM 1. A necessary and sufficient condition that e projection
EinPbearowisthatif Rz P eP,R 2 Q ¢P,and P and Q are or-
thogonal, then P and Q are very orthogonal.

Proof. If R is a row, if P = C(P)R, @ = C{Q)R, and if PQ = 0,
then C(P)C(Q) K = 0. Applying 55.2, we conclude that

CP)CQCR) =0,
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and hence, by the monotony of the formation of columns, C{P)C(Q) = 0.
This proves the necessity of the condition; to prove sufficiency we sup-
pose that R = P ¢ P and we write @ = C(P)R — P. It is clear that
R = QeP and that PQ = 0; it follows from the hypothesis that
C(P)C(Q) = 0. Since, however, the relation @ < C(P) implies that
CQ) < C(P), we may conclude that C(Q) = 0 and hence that @ = 0.
In other words P = C(P)R, and therefore, since P is arbitrary, R is a
row.

We tumn next to one of the results whose object is to tie together the
various concepts we have introduced. We shall be able to make use of
the result immediately to obtain (in Theorem 3 below) a significant
strengthening of Theorem 1. —

TraEoREM 2. If P ¢ P, then there exists an orthogonal family {Z(x;))
of cycles such that P = V;Z{x;).

Proof. Let {z;} be a maximal family of non-zero vectors in the
range of P such that Z(x;)Z(z,) = 0 whenever j = k. If

P - V,'Z(Ij) # 0,

then the range of P contains a non-zero vector z such that Z(z;)x = 0
for all j. It follows from 57.4 that Z(z,;)Z(z) = 0 for all ;. Since this
contradicts the assumed maximality of the family {z;}, we must have
P — V,‘Z(ZE_-,') = (.

In view of our subsequent results on orthogonal sums of cycles, the
reader is warned to make an effort to keep straight the conclusion of
Theorem 2. The essential point is that the family {Z(x;)} is not asserted
to be very orthogonal.

TaEOREM 3. A necessary and sufficient condition that a projection
R in P be a row is that if Z(z) and Z{y) are orthogonal cycles such that
R = Z(z) and R = Z(y), then Z(x) and Z(y) are very orthogonal.

Proof. The necessity of the condition follows from Theorem 1.
To prove sufficiency, we suppose that R = Pe¢P, R Z Q ¢P,and P
and @ are orthogonal; in view of Theorem 1, the desideratum is to
prove that P and ¢ are very orthogonal. According to Theorem 2, there
exist orthogonal families {Z(z;)} and {Z{y:)} of cycles such that P =
V;iZ(z;) and @ = V. Z(y). Since PQ = 0, it follows that

Z(z)Z(ye) = 0
for all 7 and k and therefore, by the hypothesis of the theorem,
Cz)C(y) = 0
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for all jand A. Since the additivity of the function € implies that
C(P) = v;Cxy)

and

C(@) = ViCly),
we may conclude that C(P)C(Q) = 0.

§60. Cycles and Rows

Our tkeorems get deeper all the time. In this section we prove two
key propositions, the first of which asserts that cycles do indeed have
the measure-theoretic characterization that our heuristic comments
hinted ab. (The second one can speak for itself.)

Treor®Esm 1. If x ¢  and if p is the measure on S defined for every
M in Sy u(M) = (E(M)x, x), then there exists an isomorphism U from
fa(u) onio the range of Z(z) such that UTE(MUf = x,,-f whenever
f € 82(#) end M € S.

Proof. We write Ux,, = E(M)z for every 3 in S. If the definition
of U is extended from characteristic functions to simple functions by
the requirement of linearity, then, in view of the definition of Z(z),
U becomes a linear transformation from a dense subset of 2.(u) onto a
dense subset of the range of Z(x). The additivity of F guarantees the
uniquenesss of the definition of U. Since the relations || x,, I = w(M) =
(EQ)z,x) = || E(D=x||* = || Ux, ||* shows that U is norm-preserving,
U may be extended to an isomorphism. If A, and AM are in 8, then

Ulxag, Xar) = Ulxargoar) = E(Mon M)z
= E(My) E(M)x = E(My) Ux,, -
This mevns that U(x,,-f) = E(M.)Uf whenever f = x,, ; approxima-
tion by :imple functions proves the validity of the relation for all f in
92(#)4

Theor®y 2. Lvery cycle 1s a row.

Proof. We are to prove that if x ¢ and if Z(z) 2 P ¢P, then
P = C(P)Z{x). It is convenient to use the result and the notation of
Thevrerr 1. If Q = U'PU, then @ is a projection with domain 2(x).
If M e8, then, for every f in Ru(u),

Qxy M) = UPU(xy-f) = UTPEQNUf = UTEQM) PUS

= UTEQNU-U™'PUf = x,,-Qf.
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Consider in particular the function & identically equal to 1 and write
x = Qh. Since x-xp = X5 X = X5 @ = Qxsh) = Qx, , i.e. since
€ and multiplication by x have the samé effect on every x,, , it follows
that x-f = Qf for all f in (). The fact that @ is idempotent implies
that our notation is justified, i.e. that x = x,, for some M, in S.

If now y is any vector in the range of Z(z), so that ¥ = Uf for some
Jin 2(u), then Py = PUf = UQf = Ulxy, f) = E(My)Uf = E(My)y.
The arbitrariness of 4 implies that P = PZ(x) = E(M,) Z(z). It follows
that

C(P) = E(My)C(x) £ E(M,).
Since
P = C(P)Z(x) £ E(My) Z(z) = P,

the proof is complete.

§61. The Existence of Rows

Our detour is almost over. The last result that we obtained shows
that rows exist and even (in view of 59.2) that they exist in abundance.
The main purpose of this section is to prove, on the basis of a couple of
preliminary results, that there exist rows of arbitrarily prescribed
lengths.

Tueorem 1. If {Z;} 4s a very orthogonal family of cycles and <f
R = V;Z;, then R 1s o row.

Proof. Suppose that Z(z) and Z(y) are orthogonal cycles such that
R = Z(z) and R 2 Z(y); in virtue of 59.3 it is sufficient to prove that
Z(z) and Z(y) are very orthogonal. If we write

z; = Cy) C(Z )z,
then 57.3 implies that Z(z;) = Z(z) C{y) C(Z;) for all j; if, similarly,
yi = Cl@)C(Z )y,
then Z(y;) = C(z) Z(y) C(Z;) for all 5. Since
Z) < Z@)

|

and
| Zlyy = Z(y)
for all 7, it follows from the orthogonality we have assumed, that

Z(x;)Z4(y;) = 0
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for all 5. On the other hand we have
C) = C@)CWCZ;) = Clyy)

for all j. Since z; belongs to the range of €(Z,), it is orthogonal to the
range of Z; whenever k¥  j and, consequently, z; belongs to the range
of Z; ; similarly, of course, y, belongs to the range of Z;. Since Z; is a
row (cf. 60.2), it follows from 56.2 that Z(z;) = Z{y;) for all . The
only way to reconcile our apparently contradictory results is to conclude
that all Z(x;) and Z(y;) and therefore all C(z) C(y) C(Z;) vanish. Since
C()C(y) = C)CWIC(R) = V;C(2)Cy)C(Z;) = 0, we have proved
what we had to prove.

Tueorem 2. If {R;} is a very orthogonal family of rows and if

R = V,R;,
then R is a row.

Proof. Using 59.2, we may express each R; as an orthogonal sum of
cycles. The fact that each R; is a row implies that any two distinet ones
of its summands are very orthogonal. The fact that {R;} is a very
orthogonal family implies that if j # %, then any summand of R; is
very orthogonal to any summand of R . If, in other words, we unite
mnto one family all the cycles used to obtain all B;, we obtain a repre-
sentation of E as a very orthogonal sum of cycles, and Theorem 2 be-
comes an immediate corollary of Theorem 1.

TueoREM 3. If P ¢ P, then there exists a row R such that R < P and
C(R) = C(P).

Proof. Let {R;} be a maximal very orthogonal family of non-zero
rows such that R; £ P for all j. If it is not true that P £ V;C(R}), then
(since P < V;C(R;)) there exists a non-zero vector z in the range of
P such that C(Rj;)z = 0 for all 5. Since Z(z) is a row, Z(z) < P, and
since, by 57.4 and 55.2, C(R;)C(x)} = 0 for all 7, the existence of z
contradicts the maximality of the family {R;]. We are therefore forced
to accept the inequality P £ V;C(R;) and, as a consequence, the in-
equality C(P) £ V;C(R;) = C(V;R;). Since the reverse of the last-
written inequality is obvious and since, by Theorem 2, V;R; is a row,
the proof is complete.

§62. Orthogonal Systems

If I ¢ F, an orthogonal system of type F is an orthogonal family [R;}
of non-zero rows such that C(R;) = F for all . The purpose of this
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section is to show how to construct various orthogonal systems and
how to put together the ones we have constructed to obtain bigger ones.

TareoreM 1. If u is a cardinal number, if {F;} is an orthogonal family
of non-zero projections in B, and if, for each j, {Rj} is an orthogonal
system of type I'; and of power u, then {V;R .} 1s an orthogonal system of
type V;F; and of power u.

Proof. If, for each index k, Ry = V;Rj, then it follows from (1.2
that {R:} is an orthogonal famlly of non-zero rows. The proof is com-
pleted by the observation that C(Ry) = V,C(Ru) = V,; I, for all k.

We observe that if [R;} is an orthogonal system of type I, then
V;R; £ F; the orthogonal system {R;} is called complete if V;R; =
It is obvious that a complete orthogonal system of type I” is a maximal
orthogonal system of type F; we shall presently see that cvery maximal
orthogonal system of type F is put together from complete orthogonal
systems of suitable types.

TueoreM 2. If {R;} is an orthogonal system of type V and if Fo is
a non-zero projection in F such that Fo £ F, then {FoR;} 7s an orthogonal
system of type Iy ; if {R;} is complete, then so is {FoR;}.

Proof. It is clear that {FoR;} is an orthogonal family of projections
in P and that C(FoR;) = FoF = F, for all j. Since, forall j, FoR; # 0
(by 55.3) and FoR; is a row (by 56.1), it follows that {FyR;} is indeed
an orthogonal system of type Fo . If V;R; = F, then

ViFoR; = Fo-V;R; = Fy.

TaEOREM 3. If {R;} is an orthogonal system of type I and if Fo 1s
a mon-zero projection in F such that Fy < V;R;, then {FoR;} isa com-
plete orthogonal system of type Fy .

Proof. In view of Theorem 2 it is sufficient to prove completeness,
and this is a consequence of the relations Fy = Fo-V;R; = V;FoR;.

TeeoreEM 4. If {R;} is a maximal orthogonal system of (necessarily
non-zero) type F, then there exists a vector x in the range of F such that
{C(x)R;} 15 a complete orthogonal system of type C(z).

Proof. If P = F — V;R;, then, since P £ F, it follows that

C(P)<F.

If C(P) = F, then, by 61.3, there exists a row R such that R = P and
C(R) = F. Since this contradicts the maximality of {R;}, it follows that
Fy = F — C(P) # 0. Since the relation F C(P) = 0 implies that

FoP = 0,
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and since this in turn implies (in view of the definition of P) that

Fy = V;R;,
it follows from Theorem 3 that {FoR;} is a complete orthogonal system
of type Fo. The proof of Theorem 4 may be completed by selecting an

arbitrary non-zero vector in the range of Fy and applying Theorem 2
to {FoR,}, Fy, and C(z) in place of {R;}, F, and F, respectively.

§63. The Power of a Maximal Orthogonal System

The theorem of the present section is the fundamental theorem of
multiplicity theory.

THEoREM 1. If F ¢F, then any two maximal orthogonal systems of
type F have the same power,

Proof. U F = 0, there are no orthogonal systems of type F and the
power in question is zero. Suppose then that « and v are non-zero cardinal
numbers and that {R;} and {S,} are maximal orthogonal systems of
type F and of power w and v respectively. By symmetry it will be
sufficient to prove that v £ wu.

By 62.4, there exists a non-zero vector x in the range of F such that
{C(@)R,} is a complete orthogonal system of type C(z). Since we may
replace F, {R;}, and {S.} by C(z), {C(x)R;}, and {C(z)S.} respectively
(cf. 62.2), we may (and do) assume that {R;} and {S;} are orthogonal
systems of type C{z) and of power u and » respectively, and that

Vil £ V;R;;

under these conditions we shall prove that v S w.

Since R; £ C(R;) = C(x) for all j, it follows from 58.2 and 58.3
that R; = Z(z;) for a suitable vector z; ; similarly we may find, for
each k, a vector g such that S, = Z(y).

Suppose now that u is infinite. For each value of j, let K; be the set
of those indices k for which Z(y)z; # 0; it is clear that each K; is -
countable. If k ¢ U; K, i.e.if Z(y)z; = 0 forall j, then Z(y:) Z(z;) = 0
for all 7 and therefore Z(y:) = Z(y.)-V,;Z(x;) = 0. Since this is false,
it follows that every k belongs to U;K; and hence that ¢ £ Ry-u = w.

In case u is finite, the proof is a bit more complicated. For each index
j we write p; for the measure on S defined for every Af in 8 by

uiM) = (E(M)z;, x;).

According to 60.1, there exists an isomorphism U; from :(u;) onto the
range of Z(x;) suchthat UT'E(M)U; f; = x,fi whenever f; ¢ %(u;) and
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A ¢ S. Putting together the separate isomorphisms U; we obtain an
isomorphism U from the direct sum, say §, of all (u;) onto the range
of V;Z(x,) such that UEQNU{f;} = {x,fi} whenever {f;] ¢ ® and
MeS,

We define a measure ¢ on S by writing u(31) = (E(M)z, z) for every
M in S. If u(M) = 0 for some I, then E(M)r = 0 and therefore
E(M)C(z) = 0. Since C(z) = C(z;), it follows that E(M)C(z;) = 0 and
therefore, in particular, E(M)z; = 0 for every 7. These considerations
imply that each of the measures p; is absolutely continuous with respect
to u and that, therefore, there exists a family {g;}] of non-negative
functions in £,(x) such that u;(M) = [xg,;dp for all 7 and for every
Min S’

Since y: belongs to the range of V;Z(z,) for all k, we can find vectors
{fix} in & such that y, = U{fu}. If M ¢ S, then

(E(MDys, » yxy) = (BEADU{fa,}, Ulfs,)) = (UlxaFirsd, Ulfsa})
= ({Xy-f,-kl}, {fsz}) = E-"fxufihf;(k-_-dﬂj = Ej !'ijklf?hg,'dp
= -'.”zf jk.f?k,,gjd#.

If (M) = 0, then a repetition of the argument of the preceding para-
graph shows that a necessary and sufficient condition for the vanishing
of (E(M)yr,, Yx,) is that & = k.. Tt follows that if k; and %, are re-
stricted to a countable subset of the index set {k}, then there exists a
set M in S such that u(M) = 0 and such that if £e X — A, then a
necessary and sufficient condition for the vanishing of

Zif,(8) i 0) 95(8)

is that Ky # k, . Since for a fixed {in X — M, and for each k, {fi ()} isa
vector in a w-dimensional Hilbert space in which, therefore, the power
of an orthogonal set of non-zero vectors is not greater than 4, it follows
that indeed v < u, and the proof is eomplete.

§64. Multiplicities

The result of the preceding section enables us to associate a unique
cardinal number with every projection F in F. We define the muliiplic-
ity of F, in symbols u(F), to be the power (possibly zero) of a maximal
orthogonal system of type F. The function u, from F to cardinal num-

bers, behaves very much like the multiplicity functions we defined in
§49.
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TreorREM 1. If F and G are projections in F such that 0 2 F = G,
then w(G) £ w(F);if F = 0, then u(F) = 0.

Proof. If {R;] is an orthogonal system of Lype G, then, by 62.2,
{IFR;} is an orthogonal system of type F. This proves the first assertion;
the second assertion is obvious.

Taeorem 2. If [F;} is an orthogonal family of non-zero projections
inFand if F = V;F;, then u(F) = min {u(F,)}.

Proof. We write ¥ = min {u(F;)}. Since F; £ F for all j, it follows
from Theorem 1 that u(F) £ u(F;) for all j and hence that w(F) = w,
Since, on the other hand, w(F;) 2 u for all j, it follows that, for each
J, there exists an orthogonal system {R ;] of type F; and of power wu.
Since, by 62.1, {V;R ;} is an orthogonal system of type F, it follows that
u(F) = .

- We continue imitating the theory -of multiplicity functions. If a pro-
jection F in F is such that «(F) = u(F,) whenever Fy is a non-zero pro-
jection in F such that F, = F, we shall say that I has uniform mulli-
plicity.

TuroreMm 3. If {F;} is an orthogonal family of projections in F such
that eack F; has uniform mulliplicily u, and if F = V;V;, then I has
uniform multiplicity u.

Proof. 1f F, is a1 non-zero projection in F such that Fy £ F, then
Fy = V;FoF; . Since the last-written equation remains valid if the sup-
remum is extended over those indices 7 for which FoF; = 0, it follows
from the uniformity of the /';’s and from Theorem 2, that u(Fo) = wu.

THEOREM 4. A necessary and sufficient condition that a non-zero pro-
jection F in F have uniform mulliplicity is that there exist a complete
orthogonal system of type F.

Proof. The sufficiency of the condition follows, using 62.2, from the
fact that a complete orthogonal system is maximal. To prove its neces-
ity, we let {F;} be a maximal orthogonal family of non-zero projections
in F such that F; < F for all j and such that for each j there exists a
complete orthogonal system of type F;. That such families exist, and
that, in fact, the maximality of {F;} implies V;F; = F, follows from
62.4. Since the power of a complete orthogonal system of type F; is
exactly w(I") for all 7, it is legitimate to denote such a system by {R;},
with the same index set {k} for all . If Ry = V;R; , then, by 62.1,
{R:} is an orthogonal system of type F; the completeness of {R;} fol-
lows from the relations ViR = V;VeRjy = V;F; = F.
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TuEOREM 5. If, for each cardinal number u not exceeding the dimen-
sion of ©, F. is the supremum of all those projections in F which have
uniform multiplicity u, then {F.} is an orthogonal family, V. F, = 1, and,
Jor each w, either F, = 0 or F, has uniform multiplicity u.

Proof. For a fixed cardinal number ¥, let {G;} be a maximal orthog-
onal family of projections in F such that each G; has uniform multi-
plicity u. If @ = F, — V;G; # 0, then there exists a projection F in F
such that F has uniform multiplicity u and such that FG 7 0. Since
FG has uniform multiplicity u, this contradicts the maximality of the
family {G;}. Consequently F, = V;G;, and therefore cither F, = 0
or, by Theorem 3, F, has uniform multiplicity w. It follows that if
F.F, # 0, then, since F.,F. S F, and F,F, £ F,, the multiplicity of
F,F,is equal to « and to v at the same time, or, in other words, u = ».
The fact that 1 — V.F. = 0 follows from 62.4 and Theorem 4.

The results of this section essentially conclude the structure theory
of the pair of sets F and P. Theorem 5 shows us that § decomposes in a
natural and intrinsically defined manner into pieces of uniform multi-
plicity; Theorem 4 tells us that each such picce is made up of rows cut-
ting all the way across. From 59.2 we know that every projection in P and
therefore, in particular, each of the rows that make up one of the uniform
pieces, is an orthogonal sum of cycles; according to 60.1, the given
spectral measure behaves on each such cycle as do the multiplications
by characteristic functions of measurable sets on a finite measure space.
In the remaining sections we tie this all up with muitiplicity functions
0 as to obtain the isomorphism of E with a canonical spectral measure.

§65. Measures from Vectors

If z is a vector in 9, we shall write p(z) for the measure u defined for
every M in S by p(M) = (E(M)z, z). In this section we shall study
the relation of the function p to some of the other concepts we have
introduced. The first and most obvious property of p is that p(z) = 0
if and only if x = 0; for the proof we need merely to recall that since
E(X) = 1, it follows that (E(X)z,z) = ||« |i>. A slightly less obvious
property of p is a kind of additivity: if {Z(z;)} is an orthogonal family of
c¢yeles, and if the family {z,} of vectors is summable with sum z, then

p(z) = V;p(x;).

To prove this we observe that, for each value of j, E(M)z; belongs to
the range of Z(x;) for every A in S; it follows that {E(M)z;} is an
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orthogonal family of vectors and that || E(M)z ||* = 2, || £(M)z, || for
every M in 8. Our next result lies somewhat deeper.

TueoreM 1. If x and y are veclors, a necessary and sufficient condi-
tion for the orthogonality of p(x) and p(y) is the orthogonality of C(x)
and C(y).

Proof. We write p = p(z) and » = p(y). If p L », then there exists
a set M in S such that (M) = p(X — M) = 0. (There are many ways
of seeing this: one way is to apply 47.2 first to » and » v u and then to
g and vvpu) It follows that E(M)y = E(X — M)x = 0 and hence
that y = E(X — M)y and z = E(3)z. Since this implies that

Cly) s E(X - M)
and
Clz) = E(M),

the orthogonality of C(z) and C(y) follows from that of E(}M) and
EX — M).

Suppose now that we know that C(z) and C(y) are orthogonal. Since
C(Z(z) v Z(y)) = C(x) v C(y) and since, by 58.1 and 58.2, C(z) v C(y)
is separable, it follows from 58.3 that there exists a vector z in the range
of Z(z) v Z(y) such that C{z) vC(y) = C(z). Write u = p(z) and let
U be the isomorphism described in 60.1 from 2(s:) onto the range of
Z(2). If x = Uf and y = Ug, then, since Z(2)Z(y) = 0, it follows that

0 = (BE@M)z,y) = (EQDUS, Ug) = (Ulxuf), Ug) = Jufg*du

for every M in S. This means that f{) g*(f) = 0 for almost every {
(with respect to the measure p) and hence that there exists a set M
in S such that f(¢) = 0 for almost every ¢ in M and g(f) = 0 for almost
every tin X — M. For this set M we have

(EM)z, z) = | EMUF|P = | UGN P = Ju |5 ds =0

and similarly (E(X — M)y, y) = fx-x|g ! ds = 0, whence p(z) L p(y)
as asserted.

THEOREM 2. If z and y are veclors, a necessary and sufficient condi-
tion that p(x) < p(y) is that C(z) £ C(y).

Proof. Write £ = y, + 2, with g, in the range of C(y) and 2 or-
thogonal to the range of C(y). Since p(z) = p(y0) v #(20), it follows that
if p(x) << p(y), then p(z) < p(y). Since, on the other hand, C(y) C(z) = 0,
it follows from Theorem 1 that p(z) L p(y¥). Consequently p(z0) = 0,
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so that zo = 0, and therefore x = y,. In other words z belongs to the
range of C(y), and therefore C(z) < C(y).
If, conversely, C(x) < C(y), we write p = p(x) and » = p(y). If
»(M) = 0 for some M in S, then Z(M)y = 0 and consequently
EQNCE) = 0.
It follows that
EQNCE) =0
and hence that
g = (EQDx, z) = | EQNz || = 0.

Our last result along these lines is of great technical significance; we
call the reader’s attention to the fact that, had we proved it in time,
we could have used it to simplify slightly the proof of 63.1.

TueoreMm 3. If v is a finite measure on S and if = is @ vector in o
such that v & p(x), then there exists a vector y in the range of Z(x) such
that v = p(y); if v = plx), then Z(y) = Z(x).

Proof. If u = p(x), then, by the Radon-Nikodym theorem, there
exists a non-negative function g in ,(x) such that »(A7) = [u gdu for
every Al in 8. If fis the non-negative square root of ¢, then fe Laae).
If y = Uf, where U is the isomorphism described in.60.1, then

v(M) = faulflPde = lixuf ' = || U I
= [|EQOUS P = || EQOy ||

If v = p(z), then, by Theorem 2, C(z) = C(y). Since Z(y) < Z(z) and
since Z(x) is a row, it follows that Z(y) = C(y) Z(x) = C (®) Z(x) = Z(z).

§66. Subspaces from Measures
THEOREM 1. If u is any finite measure on S, then the set {z1p(z) K u}
18 a subspace of ; tf C(u) s the projection on this subspace, then C(u) € F.
Proof. If p(z) < p and p(y) < p, then the relation

t EM)az + 8) || < |al-| EADz || + | 8]-1| EGDy |,

valid for all M in S, shows that p(ex 4+ By) vanishes whenever both
p(z) and p(y) vanish and hence whenever . vanishes. If {z.} is a sequence
of vectors such that p(z,) <« u for all n and such that Z. — z, then the
relation [| E(M)z. || — || E(M)z || shows that p(z) vanishes whenever
all p(z,) vanish and hence whenever u vanishes. It follows that

{z:p(x) K p}
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is indeed a subspace and that, therefore, C(1) may be defined. If P ¢ P
and if p(2) « p, then, since P « E, it follows that

VEQDPz]| = || PEADz || < {| E(3)z ||

for all M, and hence that p(Pz) vanishes whenever p(z) vanishes. This
implies that p(Pr) « i whenever p(z) < y, or, in other words, that P
leaves invariant the range of C(x). Consequently P « (1) and there-
fore, since P is arbitrary, C{u) ¢ P’ = F.

Tueorem 2. If p is a finitc measure on S, then C(u) is separable; if
k= p(z), then Cu) = C(z).

Proof. Let R be a row such that C(R) = C(u), and let {Z(z,)} be
an orthogonal family of cycles such that R = V;Z(z;). Since the fact
that B is a row implies that {C(z;)} is an orthogonal family, and since
p(z;) K u for all 7, it follows from 65.1 that x; = 0 except for countably
many values of j. Since C(x) = V,C(z;), it follows from 58.1 and 58.2
that C(u) is separable. If ¢ = p(z) and if p(y) < p, then, by 65.2,
C(y) = C(z), and consequently y belongs to the range of C(z). In
other words C(u) = C(z); the reverse inequality is obvious from the
definition of C{y).

Tueorenm 3. If u and v are finite measures on S, then
Clunar)y = ClC(,

and therefore if v << g, then C(») < C(y).

Proof. If p(x) < 1 A v, then p(x) « x and therefore x belongs to
the range of C'(u). This implies that C(u A ¥) < C(u). Since, similarly,
Cluav) £ C(v), it follows that C(u A v) S C(u) C(»). If, on the other
hand, z belongs to the range of C(x)C(»), then p(z) < p and o(z) < ¥,
so that p(x) < u A ». Since this means that z belongs to the range of
Clu A v), it follows that C(u) C(») £ Cle A ¥).

THEOREM 4. If p is a finite measure on X and x is a vector in © such
that C(uw)x = 0, then u 1. p(x).

Proof. If p(z) = », then, since v A g &K v, it follows from 65.3 that
there exists a vector y in the range of Z(z) such that p(y) = v A p.
Since C(x)x = 0, it follows that C(x) Z(z) = 0 and hence that C(u)y = 0.
Since, howeifer, p(y) <« g, we know that y belongs to the range of C(u).
It follows that ¥ = 0 and hence that g 1 ».

Taroresm 5. If p1s a fintle measure on S and if {p,} s a (necessarily
counlable) orthogonal family of finite measures on S such that V,u; = p,
then C(p) = V;C(u;).
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Proof. Since Theorem 3 implies that C(x) = C(u;) for all j, it is
clear that C(u) = V,;C(g;). Suppose, on the other hand, that z is any
vector in the range of C(u) — V,;C(u,). Since x belongs to the range of
C(u), we have p(z) & u; since, at the same time, C(u;)z = 0 for all j,
it follows from Theorem 4 that p(z) L p;for allj and hence that p{z) L .
These two properties of p(z) imply that p(z) = 0. We conclude that
x = 0 and this completes the proof of the theorem.

§67. The Multiplicity Function of a Spectral Measure

If 4 is a finite, non-zero measure on S, the multiplicity of x, in symbols
u(y), is defined to be the minimum value of the multiplicities u(C(v))
of the columns C(»,) determined by finite, non-zero measures v, which
are absolutely continuous with respect to u; in other words

u(u) = min {u(C()):0 = m K ul.

If £ =0, we write u(g) = 0. We proceed quickly to show that the
function u from measures to cardinal numbers is indeed a multiplicity
function.

Tueorem 1. If p and v are finite measures on S such that 0 == v K y,
then u(v) = u{p).
Proof. If 0 # » < v, then v < p and therefore u(p) = w(C(w));

since this inequality is valid for all admissible », it follows that
u(p) = uy).

TueoreM 2. If {u;} 1s a countable orthogonal family of non-zero
measures, and 1f p = V;u;, then u(u) = min {ulu;)}.

Proof. If 0 % v < p, and if v; = py A p; for each 7, then v = V;v;.
The last-written relation remains valid, of course, if the supremum is
extended over only the set J of those values of j for which v; # 0. It fol-
lows from 66.5 that C(») = V;,C(r;) and hence, from 64.2, that

u(C(w)) = minjs {u(C(»;))] Z min {u(uy}.

Since »; is arbitrary, we see that u(y) = min {u(y,)}. If, on the other
hand, 0 # »y < u; for some value of j, then », <« u and therefore
w(C(¥)) = ulu), whence u(u;) = u(u) for all j. This implies that

min {u(e;)} = u(u).

The preveding two theorems tell us that the function u is a multi-
plicity function. We now have only one more technical detail to clear
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up before completing the theory, and that is the relation between the
concepts of uniform multiplicity for measures and uniform multiplicity
for projections.

TrHEOREM 3. If  is a veclor such that C(x) has uniform multiplicily
and of p = p(x), then u has uniform multiplicity. If, conversely, u is
a mnon-zero measure of uniform multiplicity and x, 1s a vector such
that C(u) = C{xo) (¢f. 66.2 and 58.3), then there exists a veclor x such
that (i) p = p{x), (i) C(z) (= C{x)) has uniform multiplicily, and
(i) Z(x) = Z(x).

Proof. Suppose first that u = p(z) and that C{z) has uniform multi-
plicity. If 0 # »y <« , then by 65.3 there exists a vector y, in the range
of Z(z) such that » = p(y). Since yo % 0, it follows that C(w) 5 0.
Since C{w) = C(r) by 66.3 and since C(u) = C(z) by 66.2, it follows
from the assumed uniformity that «(C(»)) = u(C(x)) (and that, there-
fore, u(u) = w(C(w))). If 0 £ vy K » K g, then, applying the result just
proved, we obtain the relation u(C(»)) = u{u), whence it follows that
u(r) = u(u). This proves the first assertion of the theorem.

To prove the second assertion, we suppose that u has uniform multi-
plicity different from 0 and that x, is a vector such that C(x) = C(x).
It follows from this equation that p{z} << p; we propose to show that
in fact p(20) = u. For this purpose we let yy be a measure (a relative
complement of p{x;) in u) such that wy L o(zy) and po v p(zy) = p. If
Yo belongs to the range of C(u), then p(xo) L p{yo) and it follows from
65.1 that C(x) C{yo) = 0, so that ¥, is orthogonal to the range of C(z).
The range of C(x,) is, however, the same as the range of C(r), and, since
po << u, Yo belongs to the range of C(u). It follows that y, = 0, and
therefore that u(u) = 0. Since, however, the assumed uniformity implies
that if g # 0, then u(u) = u(u), it follows that w = 0, and we do
indeed have u = p{x,). An application of 65.3 yields a vector x such
that Z{(z) = Z(x) and p(z) = u and hence, by 66.2, such that

Clz) = C(w) = Clxo).

To prove that C(z) has uniform multiplicity, suppose that I is a non-
zero projection in F such that F < C(z). Since such an F is necessarily
separable, there exists a vector y such that F = C(y) and consequently,
by 66.2, F = C(»), where » = p(y). The fact that F # 0 implies that
v # 0. If 0  »y < », then, by n repetition of a familiar argument, it
follows that C(») 5= 0 and therefore u(C(r)) = u(C(¥)), whence

uly) = w(C)).
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Since, however, u(v) = u(u) and ©(C{»)) = uly), it follows that
w(C(»)) = ulp).

Applying this result to u in place of » (i.e. letting C(x) itself play the
role of F), we see that «(C(v)) = w(C{y)); this completes the proof of
the theorem.

§68. Coneclusion

All the pieces are before us; all that remains is to put them together.

In the preceding section we have succeeded in associating a multi-
plicity function with every spectral measure. To the multiplicity function
u we may apply 49.3 to obtain an orthogonal family {u;} of non-zero
finite measures on S such that each u; has uniform multiplicity and
such that p = V;(u A ;) whenever y is a finite measure on S. From
66.3 we see that {C(n;)} is an orthogonal family of projections in F;
we assert that V;C(u;) = 1. If, indeed, x is an arbitrary vector in £
and if g = p(2), then ¢ = V;(u A g,). It follows from 66.5 that

Clu) = ViCluap) = V;Cuy,

and hence that the vector z belongs to the range of V;C(u,). Since z is
arbitrary, we may conclude that V;C{u;) = 1.

According to 67.3, for each fixed j, C{g;) has uniform multiplicity,
and therefore, by 64.4, there exists an orthogonal family {R;} of rows
such that C(u;) = ViR and such that C(R;) = C(u;) for all k. The
cardinal number of the index family {L} is of course equal to u(y;).
Since C(u;) is separable, it follows from 58.3 and 57.4 that each row
R is in fact a cycle. (The proof of this fact makes use of the elementary
lemma which asserts that if z is a vector and R is a row such that

Z(z) £ R
and

Clx) = C(R),

then Z(z) = R.) Applying 67.3, we may find a family |z} of vectors
(7 is still fixed) such that R = Z(x;) and such that p(z;) = u;. By
60.1, the range of R is isomorphic to €.(¢;) by an isomorphism which
makes the given spectral measure I/ correspond to multiplications by
the characteristic functions of measurable sets. Putting these isomor-
phisms together, first over all k, for fixed j, and then over all §, we

obtain a representation of $ as a very large direct sum; each summand
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is the & of a finite measure on 8, and the representation makes cor-
respond to the given spectral measure E the canonical spectral meas-
ure associated with {u;} and {u(u;)].

These considerations prove that every spectral measure is unitarily
equivalent to a canonical one determined by its multiplicity function
and hence that if two spectral measures have the same multiplicity
function, they are unitarily equivalent. Suppose, conversely, that £ and
F are spectral measures with a common domain of definition and that
U is a unitary operator such that U7EU = F. Write pa(z) for the

measure u defined by x(M) = || E(M)x |’, and pr(z) for the measure x
defined by u(M) = || F(M)z ||>. If u is any measure, if ps(z) < u, and
if w(M) = 0, then || EQ)Ux || = || U"EG)Uz || = || FM)z || = 0,

whence pg(Uz) < 4. This means that if z belongs to the range of the
projection which it is natural to denote by Cr(u), then Uz belongs to
the range of Cg(u). Since, by symmetry, the converse is also true, we
infer that U™'Cx(u)U = Cp(u). We may therefore conclude that the
multiplicity associated with Cg(u) via E is the same as the multiplicity
associated with Cp(s) via F, and hence that E and F have the same
multiplicity function. This setties all our problems and fulfills all our
promises.
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A* & B? The problem was explicitiy raised more than ten years ago hy von
Neumann; it appeared in print in {39]. The first solation is due to Fuglede, [11];
the solution presented in §§41 and 42 appears in [16].

The neat and powerful characterization of spectral subspaces (41.1) was proved
for Hermitian operators in [24].

The neat arrangement of the ideas in the proof of the spectral theorem for
Hermitian operators, as given in §43, is due to Eberlein, [10].

The crycial measure-theoretic extension theorem needed for the proof of the
spectral theorem for normal operators in §44 may be found in [36: Vol. I, p. 148,
or second printing, Vol. I, p. 167].

The Radon-Nikodym theorem is standard mensure-theoretic equipment; ef .,
for instance, [15: p. 128]. A very neat proof based almost exclusively on geometric
facts about Hilbert space occurs in [38: p. 127).

The coneept of a multiplicity function appears explicitly in [41]. The first
successful attempt to construct a theory of multiplicities for non-separable
Hilbert spaces was made by Wecken, [49]. The theory for separable Hilbert spaces
is presented by Stone, [44: Chapter VII], who also gives references to the classical
literature and, in particular, to Hellinger’s original solution of the problem of
unitary equivalence. )

The “prime”” operation described in §53 is inspired by [34: Pp. 388-359].

The representation theorem for Boolean algebras which is mentioned in §54
can be found in [25). It is worth noting that the conditions that the relevant
representation theorem requires of the Boolean algebra F are much weaker than
the ones that come free with the F in the text; all that is necessary is that F
be a ¢-algebra. Another proof of the representation theorem, closer in spirit to
Stone’s topologieal approach, is outlined in f15: Exercise 15¢, p. 171].

The term “‘separable’” as used in §58 is due to Nakano, {33]. The work of Na-
kano, as represented by this paper and an earlier one, [32], is one of the main
sources on which the exposition in Chapter III is based.
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